Characterizations of random approximations
Khan, Abdul Rahim ; Hussain, Nawab
Archivum Mathematicum, Tome 039 (2003), p. 271-275 / Harvested from Czech Digital Mathematics Library

Some characterizations of random approximations are obtained in a locally convex space through duality theory.

Publié le : 2003-01-01
Classification:  41A65,  47H10,  47H40,  60H25
@article{107874,
     author = {Abdul Rahim Khan and Nawab Hussain},
     title = {Characterizations of random approximations},
     journal = {Archivum Mathematicum},
     volume = {039},
     year = {2003},
     pages = {271-275},
     zbl = {1112.60050},
     mrnumber = {2028737},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107874}
}
Khan, Abdul Rahim; Hussain, Nawab. Characterizations of random approximations. Archivum Mathematicum, Tome 039 (2003) pp. 271-275. http://gdmltest.u-ga.fr/item/107874/

Beg I. A characterization of random approximations, Int. J. Math. Math. Sci. 22 (1999), no. 1, 209–211. (1999) | MR 1684364 | Zbl 0921.41014

Beg I.; Shahzad N. Random approximations and random fixed point theorems, J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145–150. (1994) | MR 1281509 | Zbl 0811.47069

Bharucha-Reid A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–557. (1976) | MR 0413273 | Zbl 0339.60061

Itoh S. Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261–273. (1979) | MR 0528687 | Zbl 0407.60069

Lin T. C. Random approximations and random fixed point theorems for continuous 1-set contractive random maps, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167–1176. (1995) | MR 1227521 | Zbl 0834.47049

O’Regan D. A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces, Comput. Math. Appl. 30(9) (1995), 39–49. (1995) | MR 1353517 | Zbl 0846.45006

Papageorgiou N. S. Fixed points and best approximations for measurable multifunctions with stochastic domain, Tamkang J. Math. 23 (1992), no. 3, 197–203. (1992) | MR 1195311 | Zbl 0773.60057

Rao G. S.; Elumalai S. Approximation and strong approximation in locally convex spaces, Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13–26. (1984) | MR 0748110 | Zbl 0552.41025

Rudin W. Functional Analysis, McGraw-Hill Book Company, New York, 1973. (1973) | MR 0365062

Sehgal V. M.; Singh S. P. On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91–94. (1985) | MR 0796453 | Zbl 0607.47057

Tan K. K.; Yuan X. Z. Random fixed point theorems and approximations in cones, J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. (1994) | MR 1283065

Thaheem A. B. Existence of best approximations, Port. Math. 42 (1983-84), no. 4, 435–440. (1983) | MR 0836121

Tukey J. W. Some notes on the separation axioms of convex sets, Port. Math. 3 (1942), 95–102. (1942) | MR 0006606