In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it.
@article{107873, author = {Ahmed Lesfari}, title = {The complex geometry of an integrable system}, journal = {Archivum Mathematicum}, volume = {039}, year = {2003}, pages = {257-270}, zbl = {1110.70022}, mrnumber = {2028736}, language = {en}, url = {http://dml.mathdoc.fr/item/107873} }
Lesfari, Ahmed. The complex geometry of an integrable system. Archivum Mathematicum, Tome 039 (2003) pp. 257-270. http://gdmltest.u-ga.fr/item/107873/
The algebraic complete integrability of geodesic flow on $SO(4)$, Invent. Math. 67 (1982), 297–331. (1982) | MR 0665159
Geometry of algebraic curves I, Springer-Verlag, 1994. (1994)
Mathematical methods in classical mechanics, Springer-Verlag, Berlin-Heidelberg-New York, 1978. (1978) | MR 0690288
Algebro-Geometric approach to nonlinear integrable equations, Springer-Verlag, 1994. (1994)
Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London Ser. A 451 (1995), 685–700. (1995) | MR 1369055
Principles of algebraic geometry, Wiley-Interscience, 1978. (1978) | MR 0507725 | Zbl 0408.14001
Geodesic flow on $SO(4)$ and Abelian surfaces, Math. Ann. 263 (1983), 435–472. (1983) | MR 0707241 | Zbl 0521.58042
Une approche systématique à la résolution du corps solide de Kowalewski, C. R. Acad. Sc. Paris, série I, t. 302 (1986), 347–350. (1986) | MR 0837502
Abelian surfaces and Kowalewski’s top, Ann. Scient. École Norm. Sup. 4, 21 (1988), 193–223. (1988) | MR 0956766 | Zbl 0667.58019
On affine surface that can be completed by a smooth curve, Results Math. 35 (1999), 107–118. (1999) | MR 1678068 | Zbl 0947.14022
Une méthode de compactification de variétés liées aux systèmes dynamiques, Les cahiers de la recherche, Rectorat-Université Hassan II-Aïn Chock, Casablanca, Maroc, Vol. I, No. 1, (1999), 147–157. (1999)
Geodesic flow on $SO(4)$, Kac-Moody Lie algebra and singularities in the complex t-plane, Publ. Mat. 43 (1999), 261–279. (1999) | MR 1697525
Completely integrable systems: Jacobi’s heritage, J. Geom. Phys. 31 (1999), 265–286. (1999) | MR 1711527 | Zbl 0937.37046
The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s case, Nonlinear Differential Equations Appl. 8 (2001), 1–13. | MR 1828945 | Zbl 0982.35085
The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability, Rep. Math. Phys. 47 (2001), 9–20. | MR 1823005 | Zbl 1054.37038
A new class of integrable systems, Arch. Math. 77 (2001), 347–353. | MR 1853551 | Zbl 0996.70014
The Hénon-Heiles system via the Kowalewski-Painlevé analysis, Int. J. Theor. Phys. Group Theory Nonlinear Opt. 9, N${{}^{\circ }}$4 (2003), 305–330. | MR 2128205
Le théorème d’Arnold-Liouville et ses conséquences, Elem. Math. 58, Issue 1 (2003), 6–20. | MR 1961831 | Zbl 1112.37043
Le système différentiel de Hénon-Heiles et les variétés Prym, Pacific J. Math. 212, No. 1 (2003), 125–132. | MR 2016973
Tata lectures on theta II, Progr. Math., Birkhaüser, Boston, 1982. (1982)
On the equations defining Abelian varieties, Invent. Math. 1 (1966), 287–354. (1966) | MR 0204427 | Zbl 0219.14024
Integrable systems of classical mechanics and Lie algebras, Birkhäuser, 1990. (1990) | MR 1048350 | Zbl 0717.70003