Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments
Koplatadze, Roman ; Partsvania, N. L. ; Stavroulakis, Ioannis P.
Archivum Mathematicum, Tome 039 (2003), p. 213-232 / Harvested from Czech Digital Mathematics Library

Sufficient conditions are established for the oscillation of proper solutions of the system \begin{align} u_1^{\prime }(t) & =p(t)u_2(\sigma (t))\,, \\ u_2^{\prime }(t) & =-q(t)u_1(\tau (t))\,, \end{align} where $p,\,q: R_{+}\rightarrow R_{+}$ are locally summable functions, while $\tau $ and $\sigma : R_{+}\rightarrow R_{+}$ are continuous and continuously differentiable functions, respectively, and $\lim \limits _{t\rightarrow +\infty } \tau (t)=+\infty $, $\lim \limits _{t\rightarrow +\infty } \sigma (t)=+\infty $.

Publié le : 2003-01-01
Classification:  34K06,  34K11,  34K25
@article{107869,
     author = {Roman Koplatadze and N. L. Partsvania and Ioannis P. Stavroulakis},
     title = {Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments},
     journal = {Archivum Mathematicum},
     volume = {039},
     year = {2003},
     pages = {213-232},
     zbl = {1116.34331},
     mrnumber = {2010723},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107869}
}
Koplatadze, Roman; Partsvania, N. L.; Stavroulakis, Ioannis P. Asymptotic behaviour of solutions of two-dimensional linear differential systems with deviating arguments. Archivum Mathematicum, Tome 039 (2003) pp. 213-232. http://gdmltest.u-ga.fr/item/107869/

Chantladze T.; Kandelaki N.; Lomtatidze; A Oscillation and nonoscillation criteria for a second order linear equation, Georgian Math. J. 6 (1999), No. 5, 401–414. (1999) | MR 1692963 | Zbl 0944.34025

Chantladze T.; Kandelaki N.; Lomtatidze A. On oscillation and nonoscillation of second order half-linear equation, Georgian Math. J. 7 (2000), No. 1, 329–346. | MR 1779555

Coppell W. A. Stability and asymptotic behaviour of differential equations, Heat and Co., Boston, 1965. (1965)

Hille E. Non-oscillation theorems, Trans. Amer. Math. Soc.64 (1948), 234–252. (1948) | MR 0027925 | Zbl 0031.35402

Koplatadze R. G. Criteria for the oscillation of solutions of second order differential inequalities and equations with a retarded argument, (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 17 (1986), 104–121. (1986) | MR 0853276

Koplatadze R. On oscillatory properties of solutions of functional differential equations, Mem. Differential Equations Math. Phys. 3 (1994), 1–179. (1994) | MR 1375838 | Zbl 0843.34070

Koplatadze R.; Kvinikadze G.; Stavroulakis I. P. Oscillation of second order linear delay differential equations, Funct. Differ. Equ. 7 (2000), No. 1–2, 121–145. | MR 1941863 | Zbl 1057.34077

Koplatadze R.; Partsvania N. Oscillatory properties of solutions of two-dimensional differential systems with deviated arguments, (Russian) Differentsial’nye Uravneniya 33 (1997), No. 10, 1312–1320; translation in Differential Equations 33 (1997), No. 10, 1318–1326 (1998). (1997) | MR 1668129

Lomtatidze A. Oscillation and nonoscillation criteria for second order linear differential equation, Georgian Math. J. 4 (1997), No. 2, 129–138. (1997) | MR 1439591

Lomtatidze A.; Partsvania N. Oscillation and nonoscillation criteria for two-dimensional systems of first order linear ordinary differential equations, Georgian Math. J. 6 (1999), No. 3, 285–298. (1999) | MR 1679448 | Zbl 0930.34025

Mirzov J. D. Asymptotic behavior of solutions of systems of nonlinear non-autonomous ordinary differential equations, (Russian) Maikop 1993. (1993)

Nehari Z. Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428–445. (1957) | MR 0087816 | Zbl 0078.07602

Partsvania N. On oscillation of solutions of second order systems of deviated differential equations, Georgian Math. J. 3 (1996), No. 6, 571–582. (1996) | MR 1419836 | Zbl 0868.34054