On a boundary value problem for scalar linear functional differential equations
Hakl, R. ; Lomtatidze, A. ; Stavroulakis, I. P.
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 45-67 / Harvested from Project Euclid
Theorems on the Fredholm alternative and well-posedness of the linear boundary value problem $u'(t)=\ell(u)(t)+q(t)$ , $h(u)=c$ , where $\ell:C([a,b];\mathbb{R})\rightarrow L([a,b];\mathbb{R})$ and $h:C([a,b];\mathbb{R}) \rightarrow \mathbb{R}$ are linear bounded operators, $q\in L([a,b]; \mathbb{R})$ , and $c\in \mathbb{R}$ , are established even in the case when $\ell$ is not a strongly bounded operator. The question on the dimension of the solution space of the homogeneous equation $u'(t)=\ell(u)(t)$ is discussed as well.
Publié le : 2004-02-19
Classification:  34K06,  34K10
@article{1078681596,
     author = {Hakl, R. and Lomtatidze, A. and Stavroulakis, I. P.},
     title = {On a boundary value problem for scalar linear functional differential equations},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 45-67},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1078681596}
}
Hakl, R.; Lomtatidze, A.; Stavroulakis, I. P. On a boundary value problem for scalar linear functional differential equations. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  45-67. http://gdmltest.u-ga.fr/item/1078681596/