How to characterize commutativity equalities for Drazin inverses of matrices
Tian, Yong Ge
Archivum Mathematicum, Tome 039 (2003), p. 191-199 / Harvested from Czech Digital Mathematics Library

Necessary and sufficient conditions are presented for the commutativity equalities $A^*A^D = A^DA^*$, $A^{\dag }A^D = A^DA^{\dag }$, $A^{\dag }AA^D = A^DAA^{\dag }$, $AA^DA^* = A^*A^DA$ and so on to hold by using rank equalities of matrices. Some related topics are also examined.

Publié le : 2003-01-01
Classification:  15A03,  15A09,  15A27
@article{107866,
     author = {Yong Ge Tian},
     title = {How to characterize commutativity equalities for Drazin inverses of matrices},
     journal = {Archivum Mathematicum},
     volume = {039},
     year = {2003},
     pages = {191-199},
     zbl = {1122.15300},
     mrnumber = {2010720},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107866}
}
Tian, Yong Ge. How to characterize commutativity equalities for Drazin inverses of matrices. Archivum Mathematicum, Tome 039 (2003) pp. 191-199. http://gdmltest.u-ga.fr/item/107866/

Ben-Israel A.; Greville T. N. E. Generalized Inverses: Theory and Applications, Corrected reprint of the 1974 original, Robert E. Krieger Publishing Co., Inc., Huntington, New York, 1980. (1974) | MR 0587113 | Zbl 0305.15001

Campbell S. L.; Meyer C. D. EP operators and generalized inverses, Canad. Math. Bull. 18 (1975), 327–333. (1975) | MR 0405136 | Zbl 0317.15004

Campbell S. L.; Meyer C. D. Generalized Inverses of Linear Transformations, Corrected reprint of the 1979 original, Dover Publications, Inc., New York, 1991. (1979) | MR 1105324 | Zbl 0417.15002

Castro N.; Koliha J. J. Perturbation of the Drazin inverse for closed linear operators, Integral Equations Operator Theory 36 (2000), 92–106. | MR 1736919 | Zbl 1009.47002

Castro N.; Koliha J. J.; Wei Y. Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero, Linear Algebra Appl. 312 (2000), 181–189. | MR 1759331 | Zbl 0963.15002

Hartwig R. E.; Spindelböck K. Partial isometries, contractions and EP matrices, Linear and Multilinear Algebra 13 (1983), 295–310. (1983) | MR 0704779 | Zbl 0575.15008

Hartwig R. E.; Spindelböck K. Matrices for which $ A^*$ and $ A^{\dagger }$ can commute, Linear and Multilinear Algebra 14 (1984), 241–256. (1984)

Koliha J. J. Elements of $C^*$-algebras commuting with their Moore-Penrose inverse, Studia Math. 139 (2000), 81–90. | MR 1763046 | Zbl 0963.46037

Marsaglia G.; Styan G. P. H. Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974), 269–292. (1974) | MR 0384840 | Zbl 0297.15003

Rao C. R.; Mitra S. K. Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971. (1971) | MR 0338013 | Zbl 0236.15005

Tian Y. How to characterize equalities for the Moore-Penrose inverse of a matrix, Kyungpook Math. J. 41 (2001), 1–15. | MR 1847431 | Zbl 0987.15001

Wong E. T. Does the generalized inverse of $A$ commute with $A$?, Math. Mag. 59 (1986), 230–232. (1986) | MR 1572626 | Zbl 0611.15007