On the powerful part of $n\sp 2+1$
Puchta, Jan-Christoph
Archivum Mathematicum, Tome 039 (2003), p. 187-189 / Harvested from Czech Digital Mathematics Library

We show that $n^2+1$ is powerfull for $O(x^{2/5+\epsilon })$ integers $n\le x$ at most, thus answering a question of P. Ribenboim.

Publié le : 2003-01-01
Classification:  11D09,  11D25,  11N25
@article{107865,
     author = {Jan-Christoph Puchta},
     title = {On the powerful part of $n\sp 2+1$},
     journal = {Archivum Mathematicum},
     volume = {039},
     year = {2003},
     pages = {187-189},
     zbl = {1122.11311},
     mrnumber = {2010719},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107865}
}
Puchta, Jan-Christoph. On the powerful part of $n\sp 2+1$. Archivum Mathematicum, Tome 039 (2003) pp. 187-189. http://gdmltest.u-ga.fr/item/107865/

Evertse J.-H.; Silverman J. H. Uniform bounds for the number of solutions to $Y^n=f(X)$, Math. Proc. Camb. Philos. Soc. 100 (1986), 237–248. (1986) | MR 0848850

Heath-Brown D. R. Review 651.10012, Zentralblatt Mathematik 651, 41 (1989) (1989) | MR 1441325

Mardjanichvili C. Estimation d’une somme arithmetique, Dokl. Acad. Sci. SSSR 22 (1939), 387–389. (1939) | Zbl 0021.20802

Ribenboim P. Remarks on exponential congruences and powerful numbers, J. Number Theory 29 (1988), 251–263. (1988) | MR 0955951 | Zbl 0651.10012