Let $C$ be a convex subset of a complete convex metric space $X$, and $S$ and $T$ be two selfmappings on $C$. In this paper it is shown that if the sequence of Ishikawa iterations associated with $S$ and $T$ converges, then its limit point is the common fixed point of $S$ and $T$. This result extends and generalizes the corresponding results of Naimpally and Singh [6], Rhoades [7] and Hicks and Kubicek [3].
@article{107858, author = {Ljubomir B. \'Ciri\'c and Jeong Sheok Ume and M. S. Khan}, title = {On the convergence of the Ishikawa iterates to a common fixed point of two mappings}, journal = {Archivum Mathematicum}, volume = {039}, year = {2003}, pages = {123-127}, zbl = {1109.47312}, mrnumber = {1994568}, language = {en}, url = {http://dml.mathdoc.fr/item/107858} }
Ćirić, Ljubomir B.; Ume, Jeong Sheok; Khan, M. S. On the convergence of the Ishikawa iterates to a common fixed point of two mappings. Archivum Mathematicum, Tome 039 (2003) pp. 123-127. http://gdmltest.u-ga.fr/item/107858/
A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273. | MR 0356011
Quasi-contractions in Banach spaces, Publ. Inst. Math. 21 (1977), 41–48. | MR 0461224
On the Mann iteration process in Hilbert spaces, J. Math. Anal. Appl. 59 (1977), 498–504. | MR 0513062
Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–150. | MR 0336469 | Zbl 0286.47036
Mean value methods in iteration,, Proc. Amer. Math. Soc. 4 (1953), 506–510. | MR 0054846 | Zbl 0050.11603
Extensions of some fixed point theorems of Rhoades, J. Math. Anal. Appl. 96 (1983), 437–446. | MR 0719327
Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. 196 (1974), 161–176. | MR 0348565 | Zbl 0422.90089
A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257–290. | MR 0433430 | Zbl 0394.54026
Extension of some fixed point theorems of Ćirić, Maiti and Pal, Math. Sem. Notes Kobe Univ. 6 (1978), 41–46. | MR 0494051
Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56 (1976), 741–750. | MR 0430880 | Zbl 0353.47029
Fixed point iteration using infinite matrices, In “Applied Nonlinear Analysis” (V. Lakshmikantham, Ed.), pp.689–703, Academic Press, New York, 1979. | MR 0537576
Generalized contractions and the sequence of iterates, In “Nonlinear Equations in Abstract Spaces” (V. Lakshmikantham, Ed.), pp. 439–462, Academic Press, New York, 1978. | MR 0502557
A convexity in metric spaces and nonexpansive mappings, Kodai Math. Sem. Rep. 22 (1970), 142–149. | MR 0267565