On heredity of strongly proximal actions
Raja, C. Robinson Edward
Archivum Mathematicum, Tome 039 (2003), p. 51-55 / Harvested from Czech Digital Mathematics Library

We prove that action of a semigroup $T$ on compact metric space $X$ by continuous selfmaps is strongly proximal if and only if $T$ action on ${\mathcal P}(X)$ is strongly proximal. As a consequence we prove that affine actions on certain compact convex subsets of finite-dimensional vector spaces are strongly proximal if and only if the action is proximal.

Publié le : 2003-01-01
Classification:  37A15,  37B05,  54H20,  60B05
@article{107853,
     author = {C. Robinson Edward Raja},
     title = {On heredity of strongly proximal actions},
     journal = {Archivum Mathematicum},
     volume = {039},
     year = {2003},
     pages = {51-55},
     zbl = {1110.37005},
     mrnumber = {1982211},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107853}
}
Raja, C. Robinson Edward. On heredity of strongly proximal actions. Archivum Mathematicum, Tome 039 (2003) pp. 51-55. http://gdmltest.u-ga.fr/item/107853/

Billingley P. Convergence of Probability Measures, John Willey and Sons, New York-Toronto, 1968. (1968) | MR 0233396

Glasner S. Proximal flows on Lie groups, Israel Journal of Mathematics 45 (1983), 97–99. (1983) | MR 0719114

Parthasarathy K. R. Probability Measures on Metric Spaces, Academic Press, New York-London, 1967. (1967) | MR 0226684 | Zbl 0153.19101