Self-correcting iterative methods for computing ${2}$-inverses
Stanimirović, Predrag S.
Archivum Mathematicum, Tome 039 (2003), p. 27-36 / Harvested from Czech Digital Mathematics Library

In this paper we construct a few iterative processes for computing $\lbrace 2\rbrace $-inverses of a linear bounded operator. These algorithms are extensions of the corresponding algorithms introduced in [11] and a method from [8]. A few error estimates are derived.

Publié le : 2003-01-01
Classification:  15A09,  15A24,  65F20
@article{107851,
     author = {Stanimirovi\'c, Predrag S.},
     title = {Self-correcting iterative methods for computing ${2}$-inverses},
     journal = {Archivum Mathematicum},
     volume = {039},
     year = {2003},
     pages = {27-36},
     zbl = {1122.15301},
     mrnumber = {1982209},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107851}
}
Stanimirović, Predrag S. Self-correcting iterative methods for computing ${2}$-inverses. Archivum Mathematicum, Tome 039 (2003) pp. 27-36. http://gdmltest.u-ga.fr/item/107851/

An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space, Pacific J. Math. 10 (1960), 1107–113. (1960) | MR 0126165 | Zbl 0095.09401

An iterative method for computing the generalized inverse of an arbitrary matrix, Math. Comp. 19 (1965), 452–455. (1965) | MR 0179915 | Zbl 0136.12703

A note on an iterative method for generalized inversion of matrices, Math. Comp. 20 (1966), 439–440. (1966) | Zbl 0142.11603

On iterative computation of generalized inverses and associated projectors, SIAM J. Numer. Anal. 3 (1966), 410–419. (1966) | MR 0203917

Finite algorithms for $(2)$-generalized inverse $A_{T,S}^{(2)}$, Linear and Multilinear Algebra 40 (1995), 61–68. (1995) | MR 1374491

A hyperpower iterative method for computing matrix products involving the generalized inverse, SIAM J. Numer. Anal. 8 (1971), 104–109. (1971) | MR 0281330

Using error-bounds hyperpower methods to calculate inclusions for the inverse of a matrix, BIT 30 (1990), 508–515. (1990) | MR 1059311

An improved Newton iteration for the generalized inverse of a matrix, with applications, SIAM. J. Sci. Stat. Comput. 12 (1991), 1109–1130. (1991) | MR 1114976

On the inversion of matrices and linear operators, Proc. Amer. Math. Soc. 16 (1965), 893–901. (1965) | MR 0182121 | Zbl 0151.19301

On generalized inverses and on the uniform convergence of $(I-\beta K)^n$ with application to iterative methods, J. Math. Anal. Appl. 18 (1967), 417–439. (1967) | MR 0208381

A self-correcting matrix iteration for the Moore-Penrose inverse, Linear Algebra Appl. 244 (1996), 357–363. (1996) | MR 1403289

Iterative Berechnung der reziproken Matrix, Z. Angew. Math. Mech. 13 (1933), 57–59. (1933)

On the numerical properties of an iterative method for computing the Moore-Penrose generalized inverse, SIAM J. Numer. Anal. 11 (1974), 61–74. (1974) | MR 0341843

Universal iterative methods for computing generalized inverses, Acta Math. Hungar. 79(3) (1998), 253–268. (1998) | MR 1616062

Block representation of $\lbrace 2\rbrace $, $\lbrace 1,2\rbrace $ inverses and the Drazin inverse, Indian J. Pure Appl. Math. 29 (1998), 1159–1176. (1998) | MR 1672776

Neumann-type expansion of reflexive generalized inverses of a matrix and the hyperpower iterative method, Linear Algebra Appl. 10 (1975), 163–175. (1975) | MR 0416001 | Zbl 0327.15012

The representations of the generalized inverses $(A\otimes B)_{T,S}^{(1,2)}$ and $(A\otimes B)_{T,S}^{(2)}$ and some applications, J. Shanghai Univ. (Natural Sciences) 24 (1995), 1–6. (1995)

Iterative refinement of generalized matrix inverses now practicable, SIGNUM Newsletter 13.4 (1978), 9–10. (1978)

A survey of generalized matrix inverses, Computational Mathematics, Banach center Publications 13 (1984), 499–526. (1984) | MR 0798117 | Zbl 0572.65026

On computing the generalized inverse of a linear operator, Glasnik Matematički 2(22) No 2 (1967), 265–271. (1967) | MR 0234967 | Zbl 0149.35101