On Ricci curvature of totally real submanifolds in a quaternion projective space
Liu, Ximin
Archivum Mathematicum, Tome 038 (2002), p. 297-305 / Harvested from Czech Digital Mathematics Library

Let $M^n$ be a Riemannian $n$-manifold. Denote by $S(p)$ and $\overline{\operatorname{Ric}}(p)$ the Ricci tensor and the maximum Ricci curvature on $M^n$, respectively. In this paper we prove that every totally real submanifolds of a quaternion projective space $QP^m(c)$ satisfies $S\le ((n-1)c+\frac{n^2}{4}H^2)g$, where $H^2$ and $g$ are the square mean curvature function and metric tensor on $M^n$, respectively. The equality holds identically if and only if either $M^n$ is totally geodesic submanifold or $n=2$ and $M^n$ is totally umbilical submanifold. Also we show that if a Lagrangian submanifold of $QP^m(c)$ satisfies $\overline{\operatorname{Ric}}=(n-1)c+\frac{n^2}{4}H^2$ identically, then it is minimal.

Publié le : 2002-01-01
Classification:  53C26,  53C40,  53C42
@article{107843,
     author = {Ximin Liu},
     title = {On Ricci curvature of totally real submanifolds in a quaternion projective space},
     journal = {Archivum Mathematicum},
     volume = {038},
     year = {2002},
     pages = {297-305},
     zbl = {1090.53052},
     mrnumber = {1942659},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107843}
}
Liu, Ximin. On Ricci curvature of totally real submanifolds in a quaternion projective space. Archivum Mathematicum, Tome 038 (2002) pp. 297-305. http://gdmltest.u-ga.fr/item/107843/

Chen B. Y. Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568–578. (1993) | MR 1216703 | Zbl 0811.53060

Chen B. Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension, Glasgow Math. J. 41 (1999), 33–41. (1999) | MR 1689730

Chen B. Y. On Ricci curvature of isotropic and Lagrangian submanifolds in the complex space forms, Arch. Math. 74 (2000), 154–160. | MR 1735232

Chen B. Y.; Dillen F.; Verstraelen L.; Vrancken L. Totally real submanifolds of $CP^n$ satisfying a basic equality, Arch. Math. 63 (1994), 553–564. (1994) | MR 1300757

Chen B. Y.; Dillen F.; Verstraelen L.; Vrancken L. An exotic totally real minimal immersion of $S^3$ and $CP^3$ and its characterization, Proc. Royal Soc. Edinburgh, Sect. A, Math. 126 (1996), 153–165. (1996) | MR 1378838 | Zbl 0855.53011

Chen B. Y.; Houh C. S. Totally real submanifolds of a quaternion projective space, Ann. Mat. Pura Appl. 120 (1979), 185–199. (1979) | MR 0551066 | Zbl 0413.53031

Ishihara S. Quaternion Kaehlerian manifolds, J. Differential Geom. 9 (1974), 483–500. (1974) | MR 0348687 | Zbl 0297.53014