Limit distributions of Studentized means
Chistyakov, G. P. ; Götze, F.
Ann. Probab., Tome 32 (2004) no. 1A, p. 28-77 / Harvested from Project Euclid
Let $X,X_j,j\in \mathbb{N}$, be independent, identically distributed random variables with probability distribution F. It is shown that Student's statistic of the sample $\{X_j\}_{j=1}^n$ has a limit distribution G such that $G(\{-1,1\})\ne 1$, if and only if: (1) $X$ is in the domain of attraction of a stable law with some exponent $0<\alpha\le 2$; (2) $\E X=0$ if $1<\alpha\le 2;$ (3) if $\alpha=1$, then X is in the domain of attraction of Cauchy's law and Feller's condition holds: $\lim_{n\to\infty}n\E\sin(X/a_n)$ exists and is finite, where $a_n$ is the infimum of all $x>0$ such that $nx^{-2}(1+\int_{(-x,x)} y^2 F \{dy\})\le 1$. If $G(\{-1,1\})=1$, then Student's statistic of the sample $\{X_j\}_{j=1}^n$ has a limit distribution if and only if $\P(|X|>x),x>0$, is a slowly varying function at $+\infty$.
Publié le : 2004-01-14
Classification:  Student t-statistic,  self-normalized sums,  stable distributions,  domains of attraction,  the Cauchy type integral,  regular functions,  60F05,  62E20
@article{1078415828,
     author = {Chistyakov, G. P. and G\"otze, F.},
     title = {Limit distributions of Studentized means},
     journal = {Ann. Probab.},
     volume = {32},
     number = {1A},
     year = {2004},
     pages = { 28-77},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1078415828}
}
Chistyakov, G. P.; Götze, F. Limit distributions of Studentized means. Ann. Probab., Tome 32 (2004) no. 1A, pp.  28-77. http://gdmltest.u-ga.fr/item/1078415828/