On $(\sigma,\tau)$-derivations in prime rings
Ashraf, Mohammad ; Nadeem-ur-Rehman
Archivum Mathematicum, Tome 038 (2002), p. 259-264 / Harvested from Czech Digital Mathematics Library

Let $R$ be a 2-torsion free prime ring and let $\sigma , \tau $ be automorphisms of $R$. For any $x, y \in R$, set $[x , y]_{\sigma , \tau } = x\sigma (y) - \tau (y)x$. Suppose that $d$ is a $(\sigma , \tau )$-derivation defined on $R$. In the present paper it is shown that $(i)$ if $R$ satisfies $[d(x) , x]_{\sigma , \tau } = 0$, then either $d = 0$ or $R$ is commutative $(ii)$ if $I$ is a nonzero ideal of $R$ such that $[d(x) , d(y)] = 0$, for all $x, y \in I$, and $d$ commutes with both $\sigma $ and $\tau $, then either $d = 0$ or $R$ is commutative. $(iii)$ if $I$ is a nonzero ideal of $R$ such that $d(xy) = d(yx)$, for all $x, y \in I$, and $d$ commutes with $\tau $, then $R$ is commutative. Finally a related result has been obtain for $(\sigma , \tau )$-derivation.

Publié le : 2002-01-01
Classification:  16N60,  16U70,  16U80,  16W25
@article{107839,
     author = {Mohammad Ashraf and Nadeem-ur-Rehman},
     title = {On $(\sigma,\tau)$-derivations in prime rings},
     journal = {Archivum Mathematicum},
     volume = {038},
     year = {2002},
     pages = {259-264},
     zbl = {1068.16047},
     mrnumber = {1942655},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107839}
}
Ashraf, Mohammad; Nadeem-ur-Rehman. On $(\sigma,\tau)$-derivations in prime rings. Archivum Mathematicum, Tome 038 (2002) pp. 259-264. http://gdmltest.u-ga.fr/item/107839/

Aydin N.; Kaya A. Some generalization in prime rings with $(\sigma , \tau )$-derivation, Doga Turk. J. Math. 16 (1992), 169–176. (1992) | MR 1202970

Bell H. E.; Martindale W. S. Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92–101. (1987) | MR 0879877 | Zbl 0614.16026

Bell H. E.; Kappe L. C. Ring in which derivations satisfy certain algebric conditions, Acta Math. Hungar. 53 (1989), 339–346. (1989) | MR 1014917

Bell H. E.; Daif M. N. On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), 443–447. (1994) | MR 1303669 | Zbl 0820.16031

Bell H. E.; Daif M. N. On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), 337–343. (1995) | MR 1314011 | Zbl 0822.16033

Bresar M. On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641–649. (1992) | MR 1072330 | Zbl 0754.16020

Bresar M. Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394. (1993) | MR 1216475 | Zbl 0773.16017

Daif M. N.; Bell H. E. Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992), 205–206. (1992) | MR 1143947 | Zbl 0746.16029

Herstein I. N. A note on derivations, Canad. Math. Bull. 21 (1978), 369–370. (1978) | MR 0506447 | Zbl 0412.16018

Herstein I. N. Rings with involution, Univ. Chicago Press, Chicago 1976. (1976) | MR 0442017 | Zbl 0343.16011

Posner E. C. Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. (1957) | MR 0095863

Vukman J. Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47–52. (1990) | MR 1007517 | Zbl 0697.16035

Vukman J. Derivations on semiprime rings, Bull. Austral. Math. Soc. 53 (1995), 353–359. (1995) | MR 1388583