We are dealing with Dirichlet, Neumann and Newton type initial-boundary value problems for a general second order nonlinear evolution equation. Using the Fredholm operator theory we establish some sufficient conditions for Fréchet differentiability of associated operators to the given problems. With help of these results the generic properties, existence and continuous dependency of solutions for initial-boundary value problems are studied.
@article{107836, author = {Vladim\'\i r \v Durikovi\v c and Monika \v Durikovi\v cov\'a}, title = {On $F$-differentiable Fredholm operators of nonstationary initial-boundary value problems}, journal = {Archivum Mathematicum}, volume = {038}, year = {2002}, pages = {227-241}, zbl = {1090.58012}, mrnumber = {1921594}, language = {en}, url = {http://dml.mathdoc.fr/item/107836} }
Ďurikovič, Vladimír; Ďurikovičová, Monika. On $F$-differentiable Fredholm operators of nonstationary initial-boundary value problems. Archivum Mathematicum, Tome 038 (2002) pp. 227-241. http://gdmltest.u-ga.fr/item/107836/
Global existence for semilinear parabolic systems, J. Reine Angew. Math. 360 (1985), 47–83. (1985) | MR 0799657 | Zbl 0564.35060
Global inversion theorems and applications to nonlinear problems, Conferenze del Seminario di Mathematica dell’ Universitá di Bari, Atti del $3^0$ Seminario di Analisi Funzionale ed Applicazioni, A Survey on the Theoretical and Numerical Trends in Nonlinear Analysis, Gius. Laterza et Figli, Bari, 1976, pp. 211–232. (1976) | MR 0585116
Finiteness of the set of solutions of some boundary value problems for ordinary differential equations, Arch. Math. (Brno) 24 (1988), 163–172. (1988) | MR 0983234
An initial-boundary value problem for quasi-linear parabolic systems of higher order, Ann. Polon. Math. XXX (1974), 145–164. (1974) | MR 0350206
A nonlinear elliptic boundary value problem generated by a parabolic problem, Acta Math. Univ. Comenian. XLIV-XLV (1984), 225–235. (1984) | MR 0775025
Some generic properties of nonlinear second order diffusional type problem, Arch. Math. (Brno) 35 (1999), 229–244. (1999) | MR 1725840
The investigation of the Green’s matrix for a nonhomogeneous boundary value problems of parabolic type, Trudy Mosk. Mat. Obshch. 23 (1970), 179–234. (in Russian) (1970) | MR 0367455
Partial Differential Equations of Parabolic Type, Izd. Mir, Moscow, 1968. (in Russian) (1968)
Nonlinear Evolution Equations - Global Behaviour of Solutions, Springer - Verlag, Berlin, Heidelberg, New York, 1981. (1981) | MR 0610796
Green Matrices of Parabolic Boundary Value Problems, Vyšša Škola, Kijev, 1990. (in Russian) (1990)
Linejnyje i kvazilinejnyje urovnenija paraboliceskogo tipa, Izd. Nauka, Moscow, 1967. (in Russian) (1967)
Generic properties of nonlinear boundary value problems, Differential Equations and Mathematical Physics (1992), Academic Press Inc., New York, 217–234. (1992) | MR 1126697 | Zbl 0756.47047
Transversal approximation on Banach manifolds, Proc. Sympos. Pure Math. (Global Analysis) 15 (1970), 213–223. (1970) | MR 0264713 | Zbl 0206.25705
An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. (1965) | MR 0185604 | Zbl 0143.35301
Fredholm mappings and the generalized boundary value problem, Differential Integral Equations 8 No. 1 (1995), 19–40. (1995) | MR 1296108
Introduction of Functional Analysis, John Wiley and Sons, Inc., New York, 1958. (1958) | MR 0098966
Functional Analysis, Nauka, Moscow, 1980. (in Russian) (1980) | MR 0598629 | Zbl 0517.46001
Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1980. (1980) | MR 0617913 | Zbl 0435.46002
Funkcionálna analýza. Nelineárne metódy, Univerzita Komenského, Bratislava, 1989. (1989)