Homomorphisms from the unitary group to the general linear group over complex number field and applications
Cao, Chong-Guang ; Zhang, Xian
Archivum Mathematicum, Tome 038 (2002), p. 209-217 / Harvested from Czech Digital Mathematics Library

Let $M_n$ be the multiplicative semigroup of all $n\times n$ complex matrices, and let $U_n$ and $GL_n$ be the $n$–degree unitary group and general linear group over complex number field, respectively. We characterize group homomorphisms from $U_n$ to $GL_m$ when $n>m\ge 1$ or $n=m\ge 3$, and thereby determine multiplicative homomorphisms from $U_n$ to $M_m$ when $n>m\ge 1$ or $n=m\ge 3$. This generalize Hochwald’s result in [Lin. Alg. Appl.  212/213:339-351(1994)]: if $f:U_n\rightarrow M_n$ is a spectrum–preserving multiplicative homomorphism, then there exists a matrix $R$ in $GL_n$ such that $ f(A)={R}AR$ for any $A\in U_n$.

Publié le : 2002-01-01
Classification:  15A30,  20E36,  20G20
@article{107834,
     author = {Chong-Guang Cao and Xian Zhang},
     title = {Homomorphisms from the unitary group to the general linear group over complex number field and applications},
     journal = {Archivum Mathematicum},
     volume = {038},
     year = {2002},
     pages = {209-217},
     zbl = {1068.20048},
     mrnumber = {1921592},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107834}
}
Cao, Chong-Guang; Zhang, Xian. Homomorphisms from the unitary group to the general linear group over complex number field and applications. Archivum Mathematicum, Tome 038 (2002) pp. 209-217. http://gdmltest.u-ga.fr/item/107834/

Beasley L. B.; Pullman N. L. Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7–20. (1991) | MR 1083460 | Zbl 0718.15004

Cao Chongguang; Zhang Xian Multiplicative semigroup automorphisms of upper triangular matrices over rings, Linear Algebra Appl. 278, No. 1-3 (1998), 85–90. (1998) | MR 1637327

Chen; Yu. Homomorphisms of two dimentional linear groups, Comm. Algebra 18 (1990), 2383–2396. (1990) | MR 1063142

Dicks W.; Hartley B. On homomorphisms between linear groups over division rings, Comm. Algebra 19 (1991), 1919–1943. (1991) | MR 1121114

Hochwald S. H. Multiplicative maps on matrices that preserve spectrum, Linear Algebra Appl. 212/213 (1994), 339–351. (1994) | MR 1306985

Hua; Luogeng; Wan; Zhexian Classical groups, Science Technology Press, Shanghai, 1962 (Chinese). (1962)

Liu; Shaowu; Wang L. Homomorphisms between symplectic groups, Chinese Ann. Math. Ser. B 14 No. 3 (1993), 287–296. (1993) | MR 1264302 | Zbl 0797.20037

Liu; Shaowu Automorphisms of singular symplectic groups over fields, Chinese Con. Math. 19 No. 2 (1998), 203–213. (19 N) | MR 1651628

Petechuk V. M. Homomorphisms of linear groups over commutative rings, Mat. Zametki 46 No. 5 (1989), 50–61 (Russian); translation in Math. Notes 46. 5-6 (1989), 863–870. (1989) | MR 1033420 | Zbl 0702.20032

Petechuk V. M. Homomorphisms of linear groups over rings, Mat. Zametki 45 No. 2 (1989), 83–94 (Russian); translation in Math. Notes 45 1–2 (1989), 144–151. (1989) | MR 1002522 | Zbl 0682.20037

Zha; Jianguo Determination of homomorphisms between linear groups of the same degree over division rings, J. London Math. Soc., II. Ser. 53 No. 3 (1996), 479–488. (1996) | MR 1396712 | Zbl 0858.20038

Zhang; Xian; Hu; Yahui; Cao; Chongguang Multiplicative group automorphisms of invertible upper triangular matrices over fields, Acta Math. Sci. (English ed.) 20 4 (2000), 515–521. | MR 1805020 | Zbl 0985.20040