Fixed and coincidence points of hybrid mappings
Pathak, H. K. ; Khan, M. S.
Archivum Mathematicum, Tome 038 (2002), p. 201-208 / Harvested from Czech Digital Mathematics Library

The purpose of this note is to provide a substantial improvement and appreciable generalizations of recent results of Beg and Azam; Pathak, Kang and Cho; Shiau, Tan and Wong; Singh and Mishra.

Publié le : 2002-01-01
Classification:  47H10,  54C60,  54H25
@article{107833,
     author = {H. K. Pathak and M. S. Khan},
     title = {Fixed and coincidence points of hybrid mappings},
     journal = {Archivum Mathematicum},
     volume = {038},
     year = {2002},
     pages = {201-208},
     zbl = {1068.47073},
     mrnumber = {1921591},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107833}
}
Pathak, H. K.; Khan, M. S. Fixed and coincidence points of hybrid mappings. Archivum Mathematicum, Tome 038 (2002) pp. 201-208. http://gdmltest.u-ga.fr/item/107833/

Fixed point theorems for Kannan mappings, Indian J. Pure and Appl. Math. 17 (11) (1986), 1270–1275. | MR 0868963

Fixed points of asymptotically regular multivalued mappings, J. Austral. Math. Soc. (Series A) 50 (1992), 313–326. | MR 1187851

Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl. 120 (2) (1986), 528–532. | MR 0864769

Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (1979), 369–373. | MR 0545598

Fixed point theorem for weak compatible multi-valued and single-valued mappings, Acta Math. Hungar. 67 (1-2) (1995), 69–78. | MR 1316710

Coincidence and fixed point theorems for nonlinear hybrid generalized contractions, Czechoslovak Math. J. 48 (123) (1998), 341–357. | MR 1624260

Multi-valued contraction mappings, Pacific J. Math. 20 (1989), 475–488. | MR 0254828 | Zbl 0211.26001

Hyperspaces of sets, Marcel Dekker, NY, 1978. | MR 0500811 | Zbl 1125.54001

A class of quasi-nonexpansive multi-valued maps, Canad. Math. Bull. 18 (1975), 707–714. | MR 0407667

Some remarks on concidencees and fixed points, C. R. Math. Rep. Acad. Sci. Canad. 18 (2-3) (1996), 66–70. | MR 1411279

A first course in chaotic dynamical systems: Theory and experiment, Addison-Wesley 1992. | MR 1202237 | Zbl 0768.58001