Let $ A_1, A_2,\cdots , A_n $ be complex matrices of the same size. We show in this note that the Moore-Penrose inverse, the Drazin inverse and the weighted Moore-Penrose inverse of the sum $ \sum _{t=1}^{n} A_t$ can all be determined by the block circulant matrix generated by $ A_1, A_2, \cdots , A_n$. In addition, some equalities are also presented for the Moore-Penrose inverse and the Drazin inverse of a quaternionic matrix.
@article{107808, author = {Yong Ge Tian}, title = {Some equalities for generalized inverses of matrix sums and block circulant matrices}, journal = {Archivum Mathematicum}, volume = {037}, year = {2001}, pages = {301-306}, zbl = {1090.15005}, mrnumber = {1879453}, language = {en}, url = {http://dml.mathdoc.fr/item/107808} }
Tian, Yong Ge. Some equalities for generalized inverses of matrix sums and block circulant matrices. Archivum Mathematicum, Tome 037 (2001) pp. 301-306. http://gdmltest.u-ga.fr/item/107808/
Generalized inverses of circulant and generalized circulant matrices, Linear Algebra Appl. 39 (1981), 133–142. (1981) | MR 0625244 | Zbl 0465.15003
Generalized Inverses: Theory and Applications, R. E. Krieger Publishing Company, New York, 1980. (1980) | MR 0587113 | Zbl 0451.15004
Circulant Matrices, Wiley, New York, 1979. (1979) | MR 0543191 | Zbl 0418.15017
On inverting circulant matrices, Linear Algebra Appl. 25 (1979), 77–89. (1979) | MR 0528714 | Zbl 0397.15004
Moore-Penrose inverses of block circulant and block $k$-circulant matrices, Linear Algebra Appl. 16 (1979), 237–245. (1979) | MR 0469933
The Moore-Penrose inverses of $ m \times n $ block matrices and their applications, Linear Algebra Appl. 283 (1998), 35–60. (1998) | MR 1657194 | Zbl 0932.15004
Universal similarity factorization equalities over real Clifford algebras, Adv. Appl. Clifford Algebras 8 (1998), 365–402. (1998) | MR 1698292 | Zbl 0926.15026