Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
Diblík, Josef ; Khusainov, Denis
Archivum Mathematicum, Tome 037 (2001), p. 279-287 / Harvested from Czech Digital Mathematics Library

The main result of the present paper is obtaining new inequalities for solutions of scalar equation $\dot{x}(t)=b(t)x(t-\tau (t))$. Except this the interval of transient process is computed, i.e. the time is estimated, during which the given solution $x(t)$ reaches an $\varepsilon $ - neighbourhood of origin and remains in it.

Publié le : 2001-01-01
Classification:  34K20,  34K25
@article{107805,
     author = {Josef Dibl\'\i k and Denis Khusainov},
     title = {Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$},
     journal = {Archivum Mathematicum},
     volume = {037},
     year = {2001},
     pages = {279-287},
     zbl = {1090.34059},
     mrnumber = {1879450},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107805}
}
Diblík, Josef; Khusainov, Denis. Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$. Archivum Mathematicum, Tome 037 (2001) pp. 279-287. http://gdmltest.u-ga.fr/item/107805/

Bellman R.; Cooke K. L. Differential-Difference Equations, Acad. Press, New-York-London, 1963. (1963) | MR 0147745 | Zbl 0105.06402

Čermák J. The asymptotic bounds of solutions of linear delay systems, J. Math. Anal. Appl. 225 (1998), 373–338. (1998) | MR 1644331

Diblík J. Stability of the trivial solution of retarded functional equations, Differ. Uravn. 26 (1990), 215–223. (In Russian). (1990)

Elsgolc L. E.; Norkin S. B. Introduction to the Theory of Differential Equations with Deviating Argument, Nauka, Moscow, 1971. (In Russian). (1971) | MR 0352646

Györi I.; Pituk M. Stability criteria for linear delay differential equations, Differential Integral Equations 10 (1997), 841–852. (1997) | MR 1741755 | Zbl 0894.34064

Hale J.; Lunel S. M. V. Introduction to Functional Differential Equations, Springer-Verlag, 1993. (1993) | MR 1243878 | Zbl 0787.34002

Kolmanovskij V.; Myshkis A. Applied Theory of Functional Differential Equations, Kluwer Acad. Publ., 1992. (1992) | MR 1256486 | Zbl 0785.34005

Kolmanovskij V.; Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Acad. Publ., 1999. (1999) | MR 1680144 | Zbl 0917.34001

Kolmanovskij V. B.; Nosov V. R. Stability and Periodic Modes of Regulated Systems with Delay, Nauka, Moscow, 1981. (In Russian). (1981)

Krasovskii N. N. Stability of Motion, Stanford Univ. Press, 1963. (1963) | MR 0147744 | Zbl 0109.06001

Krisztin T. Asymptotic estimation for functional differential equations via Lyapunov functions, Colloq. Math. Soc. János Bolyai, Qualitative Theory of Differential Equations, Szeged, Hungary, 1988, 365–376. (1988) | MR 1062660

Myshkis A. D. Linear Differential Equations with Delayed Argument, Nauka, Moscow, 1972. (In Russian). (1972) | MR 0352648

Pituk M. Asymptotic behavior of solutions of differential equation with asymptotically constant delay, Nonlinear Anal. 30 (1997), 1111–1118. (1997) | MR 1487679

Razumikhin B. S. Stability of Hereditary Systems, Nauka, Moscow, 1988. (In Russian). (1988) | MR 0984127