Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are of the form \[ E(u)=\alpha (h(u))\, u^H + \beta (h(u))\, u^V\,, \] where $u^V$ is the vertical lift of $u\in T_xM$, $u^H$ is the horizontal lift of $u$ with respect to $K$, $h(u)= 1/2 g(u,u)$ and $\alpha ,\beta $ are smooth real functions defined on $R$. All natural 2-vector fields are of the form \[ \Lambda (u) = \gamma _1(h(u))\, \Lambda (g,K) + \gamma _2(h(u))\,u^H\wedge u^V\,, \] where $\gamma _1$, $\gamma _2$ are smooth real functions defined on $R$ and $\Lambda (g,K)$ is the canonical 2-vector field induced by $g$ and $K$. Conditions for $(E,\Lambda )$ to define a Jacobi or a Poisson structure on $TM$ are disscused.
@article{107794, author = {Josef Jany\v ska}, title = {Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold}, journal = {Archivum Mathematicum}, volume = {037}, year = {2001}, pages = {143-160}, zbl = {1090.58007}, mrnumber = {1838411}, language = {en}, url = {http://dml.mathdoc.fr/item/107794} }
Janyška, Josef. Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold. Archivum Mathematicum, Tome 037 (2001) pp. 143-160. http://gdmltest.u-ga.fr/item/107794/
Remarks on symplectic and contact 2–forms in relativistic theories, Bollettino U.M.I. (7) 9–B (1995), 587–616. (1995) | MR 1351076 | Zbl 0857.53027
Natural symplectic structures on the tangent bundle of a space-time, Proceedings of the Winter School Geometry and Topology (Srní, 1995), Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), pp. 153–162. (1995) | MR 1463517
Natural Poisson and Jacobi structures on the tangent bundle of a pseudo-Riemannian manifold, preprint 2000. | MR 1871030 | Zbl 1013.53053
Natural Operations in Differential Geometry, Springer–Verlag 1993. (1993) | MR 1202431
Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification, Bull. Tokyo Gakugei Univ., Sect.IV 40 (1988), pp. 1–29. (1988) | MR 0974641 | Zbl 0656.53021
Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno 1990. (1990) | MR 1108622
Symplectic Geometry and Analytical Mechanics, Reidel Publ., Dordrecht 1987. (1987) | MR 0882548 | Zbl 0643.53002
Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures et Appl., 57 (1978), pp. 453–488. (1978) | MR 0524629 | Zbl 0407.53025
Natural bundles and their general properties, Diff. Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, pp. 317–334. (1972) | MR 0380862 | Zbl 0246.53018
Natural transformations of vector fields on manifolds to vector fields on tangent bundles, Tsukuba J. Math. 12 (1988), pp. 115–128. (1988) | MR 0949905 | Zbl 0657.53009
Natural vector bundles and natural differential operators, Am. J. Math. 100 (1978), pp. 775–828. (1978) | MR 0509074 | Zbl 0422.58001
Lectures on the Geometry of Poisson Manifolds, Birkhäuser, Verlag 1994. (1994) | MR 1269545 | Zbl 0810.53019