Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
Janyška, Josef
Archivum Mathematicum, Tome 037 (2001), p. 143-160 / Harvested from Czech Digital Mathematics Library

Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are of the form \[ E(u)=\alpha (h(u))\, u^H + \beta (h(u))\, u^V\,, \] where $u^V$ is the vertical lift of $u\in T_xM$, $u^H$ is the horizontal lift of $u$ with respect to $K$, $h(u)= 1/2 g(u,u)$ and $\alpha ,\beta $ are smooth real functions defined on $R$. All natural 2-vector fields are of the form \[ \Lambda (u) = \gamma _1(h(u))\, \Lambda (g,K) + \gamma _2(h(u))\,u^H\wedge u^V\,, \] where $\gamma _1$, $\gamma _2$ are smooth real functions defined on $R$ and $\Lambda (g,K)$ is the canonical 2-vector field induced by $g$ and $K$. Conditions for $(E,\Lambda )$ to define a Jacobi or a Poisson structure on $TM$ are disscused.

Publié le : 2001-01-01
Classification:  53C50,  53D17,  58A20,  58A32
@article{107794,
     author = {Josef Jany\v ska},
     title = {Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold},
     journal = {Archivum Mathematicum},
     volume = {037},
     year = {2001},
     pages = {143-160},
     zbl = {1090.58007},
     mrnumber = {1838411},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107794}
}
Janyška, Josef. Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold. Archivum Mathematicum, Tome 037 (2001) pp. 143-160. http://gdmltest.u-ga.fr/item/107794/

Janyška J. Remarks on symplectic and contact 2–forms in relativistic theories, Bollettino U.M.I. (7) 9–B (1995), 587–616. (1995) | MR 1351076 | Zbl 0857.53027

Janyška J. Natural symplectic structures on the tangent bundle of a space-time, Proceedings of the Winter School Geometry and Topology (Srní, 1995), Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), pp. 153–162. (1995) | MR 1463517

Janyška J. Natural Poisson and Jacobi structures on the tangent bundle of a pseudo-Riemannian manifold, preprint 2000. | MR 1871030 | Zbl 1013.53053

Kolář I.; Michor P. W.; Slovák J. Natural Operations in Differential Geometry, Springer–Verlag 1993. (1993) | MR 1202431

Kowalski O.; Sekizawa M. Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification, Bull. Tokyo Gakugei Univ., Sect.IV 40 (1988), pp. 1–29. (1988) | MR 0974641 | Zbl 0656.53021

Krupka D.; Janyška J. Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno 1990. (1990) | MR 1108622

Libermann P.; Marle; Ch. M. Symplectic Geometry and Analytical Mechanics, Reidel Publ., Dordrecht 1987. (1987) | MR 0882548 | Zbl 0643.53002

Lichnerowicz A. Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures et Appl., 57 (1978), pp. 453–488. (1978) | MR 0524629 | Zbl 0407.53025

Nijenhuis A. Natural bundles and their general properties, Diff. Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, pp. 317–334. (1972) | MR 0380862 | Zbl 0246.53018

Sekizawa M. Natural transformations of vector fields on manifolds to vector fields on tangent bundles, Tsukuba J. Math. 12 (1988), pp. 115–128. (1988) | MR 0949905 | Zbl 0657.53009

Terng C. L. Natural vector bundles and natural differential operators, Am. J. Math. 100 (1978), pp. 775–828. (1978) | MR 0509074 | Zbl 0422.58001

Vaisman I. Lectures on the Geometry of Poisson Manifolds, Birkhäuser, Verlag 1994. (1994) | MR 1269545 | Zbl 0810.53019