We consider a nonlinear evolution inclusion defined in the abstract framework of an evolution triple of spaces and we look for extremal periodic solutions. The nonlinear operator is only pseudomonotone coercive. Our approach is based on techniques of multivalued analysis and on the theory of operators of monotone-type. An example of a parabolic distributed parameter system is also presented.
@article{107781, author = {Nikolaos S. Papageorgiou and Nikolaos Yannakakis}, title = {Existence of extremal periodic solutions for nonlinear evolution inclusions}, journal = {Archivum Mathematicum}, volume = {037}, year = {2001}, pages = {9-23}, zbl = {1090.34577}, mrnumber = {1822759}, language = {en}, url = {http://dml.mathdoc.fr/item/107781} }
Papageorgiou, Nikolaos S.; Yannakakis, Nikolaos. Existence of extremal periodic solutions for nonlinear evolution inclusions. Archivum Mathematicum, Tome 037 (2001) pp. 9-23. http://gdmltest.u-ga.fr/item/107781/
Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc. 120 (1994), 185–192. (1994) | MR 1174494 | Zbl 0795.34051
On the existennce of periodic solutions for a class of nonlinear evolution equations, Boll. Un. Mat. Ital. (7) (1993),591–605. (1993) | MR 1244409
Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands‘ (1997) (1997) | MR 1485775 | Zbl 0887.47001
Periodic solutions for nonlinear evolution inclusions, Arch. Math.(Brno) 32 (1996), 195–209. (1996) | MR 1421856 | Zbl 0908.34043
Periodic solutions for nonlinear evolution inclusions, J. Comput. Appl. Math. 52 (1994), 277–286. (1994) | MR 1310135
On the equation $\div (|Du|^{p-2}Du)+\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc. (1990), 157–164. (1990) | MR 1007505 | Zbl 0714.35029
Quelques Méthodes de Résolution des Problèmes aux Limites Non-Lineaires, Dunod, Paris (1969). (1969) | MR 0259693 | Zbl 0189.40603
On the existence of solutions for nonlinear parabolic problems with discontinuities, J. Math. Anal. Appl. 205 (1997), 434-453. (1997) | MR 1428358
Existence of solutions and periodic solutions for nonlinear evolution inclusions, Rend. Circ. Mat. Palermo, II. Ser. 48, No. 2 (1999), 341–364. (1999) | MR 1692926 | Zbl 0931.34043
Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), 653–661. (1990) | MR 1015686 | Zbl 0701.34074
Nonlinear Functional Analysis and its Applications II, Springer Verlag, New York (1990). (1990) | MR 0816732 | Zbl 0684.47029