Method of lower and upper solutions for a generalized boundary value problem
Rudolf, Boris
Archivum Mathematicum, Tome 036 (2000), p. 595-602 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  34B10,  34B15
@article{107774,
     author = {Boris Rudolf},
     title = {Method of lower and upper solutions for a generalized boundary value problem},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {595-602},
     zbl = {1090.34520},
     mrnumber = {1822829},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107774}
}
Rudolf, Boris. Method of lower and upper solutions for a generalized boundary value problem. Archivum Mathematicum, Tome 036 (2000) pp. 595-602. http://gdmltest.u-ga.fr/item/107774/

1. Fabry C.; Mawhin J.; Nkashama M.N. A multiplicity result for periodic solutions of forced nonlinear boundary value problems, Bull. London Math. Soc. 18 (1986), 173–186. (1986) | MR 0818822

2. Mawhin J. Points fixes, points critiques et problèmes aux limites, Sémin. Math. Sup. no.92, Presses Univ. Montréal, Montréal 1985. (1985) | MR 0789982

3. Mawhin J. Equivalence theorems for Nonlinear operator equations and Coincidence degree theory for some mappings in locally convex topological vector spaces, JDE 12 (1972), 610–636. (1972) | MR 0328703 | Zbl 0244.47049

4. Rachůnková I. Multiplicity results for four-point boundary value problems, Nonlinear Analysis TMA 18 (1992), 497–505. (1992) | MR 1152724

5. Rachůnková I. On the existence of two solutions of the periodic problem for the ordinary second order differential equation, Nonlinear Analysis TMA 22 (1994), 1315–1322. (1994) | MR 1280199

6. Rachůnková I. Upper and lower solutions and topological degree, JMAA 234 (1999), 311–327. (1999) | MR 1694813

7. Rudolf B. A multiplicity result for a periodic boundary value problem, Nonlinear Analysis TMA, 22 (1997), 137–144. (1997) | MR 1416037 | Zbl 0859.34016

8. Šeda V. On some nonlinear boundary value problems for ordinary differential equations, Archivum Mathematicum (Brno) 25 (1989), 207–222. (1989) | MR 1188065