Stability zones for discrete time Hamiltonian systems
Răsvan, Vladimir B.
Archivum Mathematicum, Tome 036 (2000), p. 563-573 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  39A10
@article{107771,
     author = {Vladimir B. R\u asvan},
     title = {Stability zones for discrete time Hamiltonian systems},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {563-573},
     zbl = {1090.39503},
     mrnumber = {1822826},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107771}
}
Răsvan, Vladimir B. Stability zones for discrete time Hamiltonian systems. Archivum Mathematicum, Tome 036 (2000) pp. 563-573. http://gdmltest.u-ga.fr/item/107771/

References 1. M.G. Krein Foundations of theory of $\lambda$-zones of stability of a canonical system of linear differential equations with periodic coeffcients, (in Russian). In ”In Memoriam A.A. Andronov”, pp. 413-98, USSR Acad.Publ. House, Moscow, 1955 (English version in AMS Translations 120(2): 1-70, 1983). (1955)

2. V.A. Yakubovich; V.M. Staržinskii Linear differential equations with periodic coeffcients, (in Russian). Nauka Publ. House, Moscow, 1972 (English version by J.Wiley, 1975). (1972) | MR 0364739

3. M.G. Krein; V.A. Yakubovich Hamiltonian Systems of Linear Differential Equations with Periodic Coeffcients, (in Russian). In ”Proceedings Int’l Conf. on Nonlin. Oscillations”, vol.1, Ukrainian SSR Acad. Publ. House, Kiev, pp. 277-305, 1963 (English version AMS Translations 120(2): 139-168, 1983). (1963) | MR 0157072

4. V.A. Yakubovich Linear quadratic optimization problem and frequency domain theorem for periodic systems I, Siberian Math. Journ., 27, 4, pp. 186-200, 1986 (in Russian). (1986) | MR 0867871

V.A. Yakubovich Linear quadratic optimization problem and frequency domain theorem for periodic systems II, Siberian Math. Journ., 31, 6, pp. 176-191, 1990 (in Russian). (191,) | MR 1097966

5. W. Kratz Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995. (1995) | MR 1334092 | Zbl 0842.49001

6. C.D. Ahlbrandt; A.C. Peterson Discrete Hamiltonian systems: Difference Equations, Continued Fractions and Riccati Equations, Kluwer, Boston, 1996. (1996) | MR 1423802 | Zbl 0860.39001

7. M. Bohner Linear Hamiltonian Difference Systems: disconjugacy and Jacobi-type conditions, J. Math.Anal.Appl 199, pp. 804-826, 1996. (199,) | MR 1386607

8. M. Bohner; O. Došlý Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math. 27, pp. 707-743, 1997. (1997) | MR 1490271

9. O. Došlý Transformations of linear Hamiltonian difference systems and some of their applications, J. Math.Anal.Appl. 191, pp. 250-265, 1995. (191,) | MR 1324013

10. A. Halanay; V. Ionescu Time - varying Discrete Hamiltonian Systems, Computers Math. Appl. 36, 10-12, pp. 307-326, 1998. (1998) | MR 1666149 | Zbl 0933.39032

11. A. Halanay; Vl. Răsvan Oscillations in Systems with Periodic Coeffcients and Sector-restricted Nonlinearities, in Operator Theory: Advances and Applications vol. 117, pp. 141-154, Birkhauser Verlag, Basel, 2000. | MR 1764958

12. B. Aulbach S. Hilger A Unified Approach to Continuous and Discrete Dynamics, Colloquia Mathematica Societatis Janos Bolyai, 53. Qualitative theory of differential equations, Szeged, Hungary, 1988. (1988)

13. L. Erbe S. Hilger Sturmian theory on measure chains, Diff. Equations Dynam. Syst. 1,3, pp. 223-244, 1993. (1993) | MR 1258900

14. S. Hilger Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18, pp. 18-56, 1990. (1990) | MR 1066641

15. A. Halanay; Vl. Răsvan Stability and Boundary Value Problems for Discrete-time Linear Hamiltonian Systems, Dynamic. Syst. Appl. 8, pp. 439-459, 1993. (1993) | MR 1722972

16. A. Halanay; D. Wexler Qualitative theory of pulse systems, (in Romanian) Editura Academiei, Bucharest, 1968 (Russian version by Nauka, Moscow, 1971). (1968) | MR 0233016

17. F.R. Gantmakher; M.G.Krein Oscillation matrices and kernels and small oscillations of mechanical systems, (in Russian) 2nd ed. GITTL, Moscow, 1950 (German version by Akademie Verlag, Berlin, 1960). (1950)

18. I. Ts. Gohberg; M.G. Krein Theory and applications of Volterra operators in Hilbert space, (in Russian) Nauka, Moscow, 1967 (English version in AMS Translations Math. Monographs vol. 24, Providence R.I. 1970). (1967) | MR 0264447