On the resonance problem for the $\text {4}^{\text {th}}$ order ordinary differential equations, Fučík's spectrum
Nečesal, Petr
Archivum Mathematicum, Tome 036 (2000), p. 531-542 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  34B15,  34L16,  65L15
@article{107768,
     author = {Petr Ne\v cesal},
     title = {On the resonance problem for the $\text {4}^{\text {th}}$ order ordinary differential equations, Fu\v c\'\i k's spectrum},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {531-542},
     zbl = {1090.34521},
     mrnumber = {1822823},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107768}
}
Nečesal, Petr. On the resonance problem for the $\text {4}^{\text {th}}$ order ordinary differential equations, Fučík's spectrum. Archivum Mathematicum, Tome 036 (2000) pp. 531-542. http://gdmltest.u-ga.fr/item/107768/

1. Campos J.; Dancer E. N. On the Resonance Set in a Fourth Order Equation with Jumping Nonlinearity, preprint. | MR 1799894 | Zbl 1022.35011

2. Drábek P. Solvability and Bifurcations of Nonlinear Equations, Pitman Research Notes in Mathematics Series 264, Longman, Harlow 1992. (1992) | MR 1175397

3. Krejčí P. On Solvability of Equations of the 4th Order with Jumping Nonlinearities, Časopis pro pěstování matematiky, 29 – 39, roč. 108 , Prague 1983. (1983) | MR 0694138

4. Nečesal P. Nonlinear Differential Equations of the 4th Order – Solvability, Regularity of Solutions, Fučík's spectrum and Landesman-Lazer Type Conditions, Diploma thesis (in Czech), University of West Bohemia, Pilsen 2000.

5. Tajčová G. Mathematical models of suspension bridges, Appl. Math. 42 (1997), No. 6, 451–480. (1997) | MR 1475052