@article{107763, author = {Monika Kov\'a\v cov\'a}, title = {Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r\_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {487-498}, zbl = {1072.34034}, mrnumber = {1822818}, language = {en}, url = {http://dml.mathdoc.fr/item/107763} }
Kováčová, Monika. Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$. Archivum Mathematicum, Tome 036 (2000) pp. 487-498. http://gdmltest.u-ga.fr/item/107763/
Comparison theorems for third order differential equations, Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA,1995). (1995) | MR 1419517
On a certain nonautonomous nonlinear third order differential equation, Applicable Analysis, 1995, 58, no. 1-2, 175-185. (1995) | MR 1384596 | Zbl 0880.34035
Oscillating nonlinear third order differential equations, Nonlinear Anal. Nonlinear Analysis. Theory, Methods & Applications., 1997, 28, No. 10, 1611-1622. (1997) | MR 1430504 | Zbl 0871.34022
On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations, Nonlinear Analysis. Theory, Methods & Applications. 1998, 32, No. 3, 417–425. (1998) | MR 1610594 | Zbl 0945.34021
Oscillation tests for a class of ordinary differential equations, Diferen. Uravnenja, 28 No. 2, 1992, 180-190. (1992) | MR 1184921 | Zbl 0788.34027
Comparison Theorems for the n-th Order Differential Equations, Nonlinear Analysis Forum, 2000, vol. 5, 173–190. (190.) | MR 1798693