A modified strong squeezing property and the existence of inertial manifolds of semiflows
Koksch, Norbert
Archivum Mathematicum, Tome 036 (2000), p. 477-486 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  34C30,  34G20,  35B42,  35K90,  37D10,  37L25
@article{107762,
     author = {Norbert Koksch},
     title = {A modified strong squeezing property and the existence of inertial manifolds of semiflows},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {477-486},
     zbl = {1072.37053},
     mrnumber = {1822817},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107762}
}
Koksch, Norbert. A modified strong squeezing property and the existence of inertial manifolds of semiflows. Archivum Mathematicum, Tome 036 (2000) pp. 477-486. http://gdmltest.u-ga.fr/item/107762/

1. P. Constantin C. Foias B. Nicolaenko; And R. Temam Nouveaux resultats sur les variétés inertielles pour les équations différentielles dissipatives, (New results on the inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 302 (1986), 375–378. (1986) | MR 0838393

2. P. Constantin C. Foias B. Nicolaenko; And R. Temam Integral manifolds and inertial manifolds for dissipative partial differential equations, Applied Mathematical Sciences, vol. 70, Springer, 1989. (1989) | MR 0966192

3. C. Foias B. Nicolaenko G.R. Sell; And R. Temam Variétés inertielles pour l’équation de Kuramoto-Sivashinsky, (Inertial manifolds for the Kuramoto-Sivashinsky equation), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 285–288. (1985) | MR 0803219

4. C. Foias G.R. Sell; And R. Temam Variétés inertielles des équations différentielles dissipatives, (Inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 139–141. (1985) | MR 0801946

5. C. Foias G.R. Sell; And R. Temam Inertial manifolds for nonlinear evolutionary equations, J. of Differential Equations 73 (1988), 309–353. (1988) | MR 0943945

6. C. Foias G.R. Sell; And E.S. Titi Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. of Dynamics and Differential Equations 1 (1989), no. 2, 199–244. (1989) | MR 1010966

7. D. Henry Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 850, Springer, 1981. (1981) | MR 0610244 | Zbl 0456.35001

8. N. Koksch A comparison principle approach to the existence and smootheness of integral manifolds, Habilitation, Fak. Mathematik und Naturwissenschaften der TU Dresden, 1999. (1999)

9. M. Miklavčič Applied functional analysis and partial differential equations, World Scientific, Singnapur, New Jersey, London, Hong Kong, 1998. (1998) | MR 1784426

10. H. Ninomiya Some remarks on inertial manifolds, J. Math. Kyoto Univ. 32 (1992), no. 4, 667–688. (1992) | MR 1194108 | Zbl 0815.35037

11. J.C. Robinson Inertial manifolds and the cone condition, Dyn. Syst. Appl. 2 (1993), no. 3, 311–330. (1993) | MR 1233854 | Zbl 0787.34036

12. J.C. Robinson The asymptotic completeness of inertial manifolds, Nonlinearity 9 (1996), 1325–1340. (1996) | MR 1416479 | Zbl 0898.35016

13. A.V. Romanov Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations, Russ. Acad. Sci., Izv., Math. 43 (1994), no. 1, 31–47. (1994) | MR 1243350

14. R. Temam Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer, New York, 1997. (1997) | MR 1441312