The generalized coincidence index --- application to a boundary value problem
Gabor, Dorota
Archivum Mathematicum, Tome 036 (2000), p. 447-460 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  34B15,  34G20,  47H09,  47H11,  47J05,  55M25
@article{107758,
     author = {Dorota Gabor},
     title = {The generalized coincidence index --- application to a boundary value problem},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {447-460},
     zbl = {1090.34576},
     mrnumber = {1822813},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107758}
}
Gabor, Dorota. The generalized coincidence index --- application to a boundary value problem. Archivum Mathematicum, Tome 036 (2000) pp. 447-460. http://gdmltest.u-ga.fr/item/107758/

1. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina B. N. Sadovskii Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel-Boston-Berlin 1992. (1992) | MR 1153247

2. Yu. G. Borisovich B. D. Gelman A. D. Myshkis; V. V. Obukhovskii Topological methods in the fixed point theory of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143. (1980) | MR 0565568

3. D. Gabor W. Kryszewski A coincidence Theory involving Fredholm operators of nonnegative index, Topol. Methods Nonlinear Anal. 15, 1 (2000), 43-59. | MR 1786250

4. D. Gabor The coincidence index for fundamentally contractible multivalued maps with nonconvex values, to appear in Ann. Polon. Math. | MR 1821162 | Zbl 0969.47041

5. D. Gabor Coincidence points of Fredholm operators and noncompact set-valued maps, (in Polish), Ph.D. Thesis, N. Copernicus University, Toruń 2000.

6. K. Gęba I. Massabo A. Vignoli Generalized topological degree and bifurcation, Proc. Conf. on Nonlinear Anal. Appl., Maratea Italy, 1986, D. Reidel Publ. Co., 55-73. (1986) | MR 0852570

7. S-T. Hu Homotopy theory, Academic Press, New York 1959. (1959) | MR 0106454 | Zbl 0088.38803

8. W. Kryszewski Homotopy properties of set-valued mappings, Wyd. Uniwersytetu Mikolaja Kopernika, Toruń 1997. (1997)

9. J. Mawhin Topological degree methods in nonlinear boundary value problems, Conf. Board Math. Sc. 40, Amer. Math. Soc., Providence, Rhode Island 1979. (1979) | MR 0525202 | Zbl 0414.34025

10. T. Pruszko Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229, 1-52. | Zbl 0543.34008