Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point
Diblík, Josef ; Růžičková, Miroslava
Archivum Mathematicum, Tome 036 (2000), p. 435-446 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  34C05,  34D05
@article{107757,
     author = {Josef Dibl\'\i k and Miroslava R\r u\v zi\v ckov\'a},
     title = {Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {435-446},
     zbl = {1090.34530},
     mrnumber = {1822812},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107757}
}
Diblík, Josef; Růžičková, Miroslava. Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point. Archivum Mathematicum, Tome 036 (2000) pp. 435-446. http://gdmltest.u-ga.fr/item/107757/

1. K. Balla On solution of singular boundary problems for nonlinear systems of ordinary differential equations, Zh. vych. mat. i mat. fiz., 20 (1980), 909–922 (in Russian). (1980) | MR 0585288

2. J. Baštinec; J. Diblík Three–point singular boundary-value problem for a system of three differential equations, Math. Communication, 3 (1998), 211–219. (1998) | MR 1679740

3. J. Diblík On existence of O-curves of a singular system of differential equations, Math. Nachr., 122 (1985), 247–258 (in Russian). (1985) | MR 0871207

4. J. Diblík On existence of solutions of a real system of ordinary differential equations, entering into a singular point, Ukrainian Math. J., 38 (1986), 701–706 (in Russian). (1986) | MR 0881960

5. J. Diblík On existence of O - curves of systems of ordinary differential equations, that are asymptotically equal to a given curve, Differential Equations, 23 (1987), 2159 – 2161 (in Russian). (1987)

6. J. Diblík Some asymptotic properties of solutions of certain classes of ordinary differential equations, J. Math. Anal. Appl., 165 (1992), 288–304. (1992) | MR 1151073

7. J. Diblík On asymptotic behaviour of solutions of certain classes of ordinary differential equations, J. Diff. Equat., 95 (No 2), 203–217, 1992. (1992) | MR 1165420

8. J. Diblík; M. Růžičková Existence of solutions of a nonlinear differential system of differential equations entering into a singular point, Studies of University in Žilina, Math. – Phys. Ser. 32 (1999), 11–19. (1999) | MR 1755619

9. Ph. Hartman Ordinary differential equations, Second Edition, Birkhäuser, 1982. (1982) | MR 0658490

10. V.A. Chechyk Investigations of systems ordinary differential equations with singularities, Trudy Moskovsk. Mat. Obsc., 8 (1959), 155–198 (in Russian). (1959) | MR 0107066

11. I.T. Kiguradze Some singular boundary value problems for ordinary differential equations, Izd. Tbilisskovo univ., Tbilisi, 1975, 352 pp. (in Russian). (1975) | MR 0499402

12. N.B. Konyukhova Singular Cauchy problems for systems of ordinary differential equations, Zh. vych. mat. i mat. fiz., 23 (1983), 629–645 (in Russian). (1983) | MR 0706888 | Zbl 0555.34002

13. Chr. Nowak Some remarks on a paper by Samimi on nonuniqueness criteria for ordinary differential equations, Appl. Anal., 47 (1992), 39–44. (1992) | MR 1214647 | Zbl 0792.34002

14. D. O’Regan Nonresonant nonlinear singular problems in the limit circle case, J. Math. Anal. Appl., 197 (1996), 708–725. (197 ) | MR 1373074

15. M. Růžičková The asymptotic properties of solutions of differential system of the form $g_i (x) y'_i = u_i (y_i ) + f_i (x, y_1 , . . . , y_n )$, $i = 1, 2, . . . , n$ in some neighbourhood of a singular point, Acta Univ. Palack. Olomuc. Fac. Rer. Nat., Math. 32 (1993), 151–158. (1993)

16. T. Ważewski Sur un principe topologique de l’examen de l’ allure asymptotique des intégrales des équations différentielles ordinaires, Ann. de la Soc. Polon. de Mathèmatique, 20 (1947), (Krakow 1948), 279–313. (1947) | MR 0026206