A note on differential and integral equations in locally convex spaces
Bugajewska, Daria ; Bugajewski, Dariusz
Archivum Mathematicum, Tome 036 (2000), p. 415-420 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  34G20,  34K30,  45N05,  47N20
@article{107754,
     author = {Daria Bugajewska and Dariusz Bugajewski},
     title = {A note on differential and integral equations in locally convex spaces},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {415-420},
     zbl = {1090.34575},
     mrnumber = {1822809},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107754}
}
Bugajewska, Daria; Bugajewski, Dariusz. A note on differential and integral equations in locally convex spaces. Archivum Mathematicum, Tome 036 (2000) pp. 415-420. http://gdmltest.u-ga.fr/item/107754/

1. Astala K. On Peano’s theorem in locally convex spaces, Studia Math., 73, 1982, 213-223. (1982) | MR 0675425 | Zbl 0507.34047

2. Bugajewska D. Topological properties of solution sets of some problems for differential equations, Ph. D. Thesis, Poznań, 1999. (1999)

3. Bugajewska D.; Bugajewski D. On topological properties of solution sets for differential equations in locally convex spaces, submitted. | Zbl 1042.34555

4. Bugajewski D. On the Volterra integral equation in locally convex spaces, Demonstratio Math., 25, 1992, 747-754. (1992) | MR 1222551 | Zbl 0781.45012

5. Bugajewski D. On differential and integral equations in locally convex spaces, Demonstratio Math., 28, 1995, 961-966. (1995) | MR 1392249 | Zbl 0855.34071

6. Bugajewski D.; Szufla S. Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces, Nonlinear Analysis, 20, No 2, 1993, 169-173. (1993) | MR 1200387

7. Constantin A. On the unicity of solution for the differential equation $x^{(n)} = f (t, x)$, Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. (1991) | MR 1244738

8. Hukuhara M. Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique, J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. (1959) | MR 0108630

9. Januszewski J.; Szufla S. On the Urysohn integral equation in locally convex spaces, Publ. Inst. Math., 51, No 65, 1992, 77-80. (1992) | MR 1213650

10. Kelley J.L.; Namioka I. Linear topological spaces, Van Nostrand, Princeton, 1963. (1963) | MR 0166578 | Zbl 0115.09902

11. Krasnoselski M.A.; Krein S.G. K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach, Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23. (1956)

12. Lemmert R. On ordinary differential equations in locally convex spaces, Nonlinear Analysis, 10, No 12, 1986, 1385-1390. (1986) | MR 0869547 | Zbl 0612.34056

13. Millionščikov W. K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach, Dokl. Akad. Nauk SSSR, 131, 1960, 510-513. (1960)

14. Pianigiani P. Existence of solutions of an ordinary differential equations in the case of Banach space, Bull. Ac. Polon.: Math., 8, 1976,667-673. (1976)

15. Reichert M. Condensing Volterra operators in locally convex spaces, Analysis, 16, 1996, 347-364. (1996) | MR 1429459 | Zbl 0866.47042

16. Sadovski B. N. Limit-compact and condensing mappings, Russian Math. Surveys, 27, 1972, 81-146. (1972) | MR 0428132

17. Szufla S. Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon.: Math., 26, 1978, 407-413. (1978) | MR 0492684

18. Szufla S. On the Kneser-Hukuhara property for integral equations in locally convex spaces, Bull. Austral. Math. Soc., 36, 1987, 353-360. (1987) | MR 0923817