@article{107754, author = {Daria Bugajewska and Dariusz Bugajewski}, title = {A note on differential and integral equations in locally convex spaces}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {415-420}, zbl = {1090.34575}, mrnumber = {1822809}, language = {en}, url = {http://dml.mathdoc.fr/item/107754} }
Bugajewska, Daria; Bugajewski, Dariusz. A note on differential and integral equations in locally convex spaces. Archivum Mathematicum, Tome 036 (2000) pp. 415-420. http://gdmltest.u-ga.fr/item/107754/
On Peano’s theorem in locally convex spaces, Studia Math., 73, 1982, 213-223. (1982) | MR 0675425 | Zbl 0507.34047
Topological properties of solution sets of some problems for differential equations, Ph. D. Thesis, Poznań, 1999. (1999)
On topological properties of solution sets for differential equations in locally convex spaces, submitted. | Zbl 1042.34555
On the Volterra integral equation in locally convex spaces, Demonstratio Math., 25, 1992, 747-754. (1992) | MR 1222551 | Zbl 0781.45012
On differential and integral equations in locally convex spaces, Demonstratio Math., 28, 1995, 961-966. (1995) | MR 1392249 | Zbl 0855.34071
Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces, Nonlinear Analysis, 20, No 2, 1993, 169-173. (1993) | MR 1200387
On the unicity of solution for the differential equation $x^{(n)} = f (t, x)$, Rend. Circ. Mat. Palermo, Serie II, 42, 1991, 59-64. (1991) | MR 1244738
Théorems fondamentaux de la théorie des équations différentielles ordinaires dans l’espace vectorial topologique, J. Fac. Sci. Univ. Tokyo, Sec. I, 8, No 1, 1959, 111-138. (1959) | MR 0108630
On the Urysohn integral equation in locally convex spaces, Publ. Inst. Math., 51, No 65, 1992, 77-80. (1992) | MR 1213650
Linear topological spaces, Van Nostrand, Princeton, 1963. (1963) | MR 0166578 | Zbl 0115.09902
K teorii obyknoviennych differencialnych uravnienij v banachovych prostranstvach, Trudy Semin. Funkc. Anal. Voronež. Univ., 2, 1956, 3-23. (1956)
On ordinary differential equations in locally convex spaces, Nonlinear Analysis, 10, No 12, 1986, 1385-1390. (1986) | MR 0869547 | Zbl 0612.34056
K teorii obyknoviennych differencialnych uravnienij v lokalno vypuklych prostranstvach, Dokl. Akad. Nauk SSSR, 131, 1960, 510-513. (1960)
Existence of solutions of an ordinary differential equations in the case of Banach space, Bull. Ac. Polon.: Math., 8, 1976,667-673. (1976)
Condensing Volterra operators in locally convex spaces, Analysis, 16, 1996, 347-364. (1996) | MR 1429459 | Zbl 0866.47042
Limit-compact and condensing mappings, Russian Math. Surveys, 27, 1972, 81-146. (1972) | MR 0428132
Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon.: Math., 26, 1978, 407-413. (1978) | MR 0492684
On the Kneser-Hukuhara property for integral equations in locally convex spaces, Bull. Austral. Math. Soc., 36, 1987, 353-360. (1987) | MR 0923817