Topological structure of solution sets: current results
Górniewicz, Lech
Archivum Mathematicum, Tome 036 (2000), p. 343-382 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  34A60,  47H04,  47H10,  54C60,  54H25
@article{107750,
     author = {Lech G\'orniewicz},
     title = {Topological structure of solution sets: current results},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {343-382},
     zbl = {1090.54014},
     mrnumber = {1822805},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107750}
}
Górniewicz, Lech. Topological structure of solution sets: current results. Archivum Mathematicum, Tome 036 (2000) pp. 343-382. http://gdmltest.u-ga.fr/item/107750/

1. R. P. Agarwal; D. O’Regan The solutions set of integral inclusions on the half line, Analysis (2000), 1–7. | MR 1759068

2. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina; B. N. Sadovskii Measures of Noncompactness and Condensing Operators,, (translated from Russian), Birkhauser, Berlin, 1992. (1992) | MR 1153247

3. J. Andres On the multivalued Poincaré operators, TMNA 10 (1997), 171–182. (1997) | MR 1646627 | Zbl 0909.47038

4. J. Andres G. Gabor; L. Górniewicz Boundary value problems on infinite intervals, Trans. Amer. Math. Soc. 351 (1999), 4861–4903. (1999) | MR 1603870

5. J. Andres G. Gabor; L. Górniewicz Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwendungen 18, 4 (1999), 1–20. (1999)

6. J. Andres G. Gabor; L. Górniewicz Acyclicity of solutions sets to functional inclusions, Nonlinear Analysis TMA (to appear). | MR 1894303

7. J. Andres; L. Górniewicz On the Banach contraction principle for multivalued mappings, Lecture Notes in Mathematics (to appear). | MR 1842872

8. J. Andres L. Górniewicz; M. Lewicka Partially dissipative periodic processes, Banach Center Publ. 35 (1996), 109–118. (1996) | MR 1448430

9. G. Anichini; P. Zecca Multivalued differential equations in a Banach space: an application to control theory, J. Optim. Th. Appl. 21 (1977), 477–486. (1977) | MR 0440144

10. N. Aronszajn Le correspondant topologique de l’unicité dans la théorie des équations différentielles, Ann. Math. 43 (1942), 730–738. (1942) | MR 0007195 | Zbl 0061.17106

11. Z. Artstein Continuous dependence on parameters of solutions of operator equations, Trans. Amer. Math. Soc. 231 (1977), 143–166. (1977) | MR 0445351

12. A. Augustynowicz Z. Dzedzej; B. D. Gelman The solution set to BVP for some functional differential inclusions, Set-Valued Analysis 6 (1998), 257–263. (1998) | MR 1669783

13. R. Bader; W. Kryszewski On the solution sets of constrained differential inclusions with applications, Set Valued Anal. (to appear). | MR 1863363 | Zbl 0991.34011

14. M. E. Ballotti Aronszajn’s theorem for a parabolic partial differential equation, Non-linear Anal. TMA 9, No. 11 (1985), 1183–1187. (1985) | MR 0813652 | Zbl 0583.35053

15. J. Bebernes; M. Martelli On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. TMA 4, No. 4 (1980), 821–830. (1980) | MR 0582550 | Zbl 0453.34019

16. J. Bebernes; K. Schmitt Invariant sets and the Hukuhara–Kneser property for systems of parabolic partial differential equations, Rocky Mount. J. Math. 7, No. 3 (1967), 557–567. (1967) | MR 0600519

17. R. Bielawski L. Górniewicz; S. Plaskacz Topological approach to differential inclusions on closed sets of $R^n$, , Dynamics Reported 1 (1992), 225–250. (1992)

18. D. Bielawski T. Pruszko On the structure of the set of solutions of a functional equation with application to boundary value problems, Ann. Polon. Math. 53, No. 3 (1991), 201–209. (1991) | MR 1109588

19. A. W. Bogatyrev Fixed points and properties of solutions of differential inclusions, Math. Sbornik 47 (1983), 895–909 (in Russian). (1983) | MR 0712098

20. A. Bressan A. Cellina; A. Fryszkowski A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc. 112 (1991), 413–418. (1991) | MR 1045587

21. F. E. Browder; C. P. Gupta Topological degree and nonlinear mappings of analytic type in Banach spaces, J. Math. Anal. Appl. 26 (1969), 730–738. (1969) | MR 0257826 | Zbl 0176.45401

22. J. Bryszewski L. Górniewicz; T. Pruszko An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations, J. Math. Anal. Appl. 76 (1980), 107–115. (1980) | MR 0586649

23. A. I. Bulgakov; L. N. Lyapin Some properties of the set of solutions of a Volterra–Hammerstein integral inclusion, Diff. Uravni. 14, No. 8 (1978), 1043–1048. (1978) | MR 0507406 | Zbl 0433.45018

24. A. I. Bulgakov; L. N. Lyapin Certain properties of the set of solutions of the Volterra–Hammerstein integral inclusion, Differents. Uravn. 14, No. 8 (1978), 1465–1472. (1978) | MR 0507406

25. A. I. Bulgakov; L. N. Lyapin On the connectedness of sets of solutions of functional inclusions, Mat. Sbornik 119, No. 2 (1982), 295–300. (1982) | MR 0675198

26. A. Cellina On the existence of solutions of ordinary differential equations in a Banach space, Funkc. Ekvac. 14 (1971), 129–136. (1971) | MR 0304805

27. A. Cellina On the local existence of solutions of ordinary differential equations, Bull. Acad. Polon. Sci. 20 (1972), 293–296. (1972) | MR 0315237 | Zbl 0255.34053

28. A. Cellina On the nonexistence of solutions of differential equations in nonreflexive spaces, Bull. Amer. Math. Soc. 78 (1972), 1069–1072. (1972) | MR 0312017

29. J. Chandra V. Lakshmikantham; A. R. Mitchell Existence of solutions of boundary value problems for nonlinear second order systems in a Banach space, Nonlinear Anal. TMA 2 (1978), 157–168. (1978) | MR 0512279

30. S. N. Chow; J. D. Schur An existence theorem for ordinary differential equations in Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 1018–1020. (1971) | MR 0287127

31. S. N. Chow; J. D. Schur Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133–144. (1973) | MR 0324162

32. M. Cichoń; I. Kubiaczyk Some remarks on the structure of the solutions set for differential inclusions in Banach spaces, J. Math. Anal. Appl. 233 (1999), 597–606. (1999) | MR 1689606

33. A. Constantin Stability of solution sets of differential equations with multivalued right hand side, J. Diff. Equs. 114 (1994), 243–252. (1994) | MR 1302143 | Zbl 0808.34013

34. G. Conti W. Kryszewski; P. Zecca On the solvability of systems of noncompact inclusions, Ann. Mat. Pura Appl. (4), 160 (1991), 371–408. (1991) | MR 1163216

35. G. Conti V. V. Obukhovskii; P. Zecca On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space, (Preprint). | MR 1448435

36. J.-F. Couchouron; M. Kamenskii Perturbations d’inclusions paraboliques par des opérateurs condensants, C. R. Acad. Sci. Paris 320 (1995), Serie I. 1–6. (1995) | MR 1340059

37. H. Covitz S. B. Nadler, Jr. Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11. (1970) | MR 0263062

38. K. Czarnowski Structure of the set of solutions of an initial-boundary value problem for a parabolic partial differential equations in an unbounded domain, Nonlinear Anal. TMA 27, no. 6 (1996), 723–729. (1996) | MR 1399071

39. K. Czarnowski On the structure of fixed point sets of ’k-set contractions’ in $B_0$ spaces, Demonstratio Math. 30 (1997), 233–244. (1997) | MR 1469589

40. K. Czarnowski; T. Pruszko On the structure of fixed point sets of compact maps in $B_0$ spaces with applications to integral and differential equations in unbounded domain, J. Math. Anal. Appl. 154 (1991), 151–163. (1991) | MR 1087965

41. J. L. Davy Properties of the solution set of a generalized differential equations, Bull. Austr. Math. Soc. 6 (1972), 379–389. (1972) | MR 0303023

42. F. S. De Blasi Existence and stability of solutions for autonomous multivalued differential equations in a Banach space, Rend. Accad. Naz. Lincei, Serie VII, 60 (1976), 767–774. (1976) | MR 0481328

43. F. S. De Blasi On a property of the unit sphere in a Banach space, Bull. Soc. Math. R. S. Roumaine 21 (1977), 259–262. (1977) | MR 0482402 | Zbl 0365.46015

44. F. S. De Blasi Characterizations of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl. 106, No. 1 (1985), 1–8. (1985) | MR 0780314 | Zbl 0574.54012

45. F. S. De Blasi L. Górniewicz; G. Pianigiani Topological degree and periodic solutions of differential inclusions, Nonlinear Anal. TMA 37 (1999), 217–245. (1999) | MR 1689752

46. F. S. De Blasi; J. Myjak On the solutions sets for differential inclusions, Bull. Polon. Acad. Sci. 33 (1985), 17–23. (1985) | MR 0798723 | Zbl 0571.34008

47. F. S. De Blasi; J. Myjak; O n the structure of the set of solutions of the Darboux problem for hyperbolic equations, Proc. Edinburgh Math. Soc., Ser. 2 29, No. 1 (1986), 7–14. (1986) | MR 0829175

48. F. S. De Blasi; G. Pianigiani On the solution sets of nonconvex differential inclusions, J. Diff. Equs. 128 (1996), 541–555. (1996) | MR 1398331 | Zbl 0853.34013

49. F. S. De Blasi; G. Pianigiani Solution sets of boundary value problems for nonconvex differential inclusions, Nonlinear Anal. TMA 1 (1993), 303–313. (1993) | MR 1233098 | Zbl 0785.34018

50. F. S. De Blasi G. Pianigiani; V. Staicu Topological properties of nonconvex differential inclusions of evolution type, Nonlinear Anal. TMA 24 (1995), 711–720. (1995) | MR 1319080

51. K. Deimling Periodic solutions of differential equations in Banach spaces, Man. Math. 24 (1978), 31–44. (1978) | MR 0499551 | Zbl 0373.34032

52. K. Deimling Open problems for ordinary differential equations in a Banach space, (in the book: Equationi Differenziali), Florence, 1978. (1978)

53. K. Deimling; M. R. Mohana Rao On solutions sets of multivalued differential equations, Applicable Analysis 30 (1988), 129–135. (1988)

54. R. Dragoni J. W. Macki P. Nistri; P. Zecca Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series, 342, Longman, Harlow, 1996. (1996) | MR 1427944

55. J. Dubois; P. Morales On the Hukuhara–Kneser property for some Cauchy problems in locally convex topological vector spaces, Lecture Notes in Math. vol. 964, pp. 162–170, Springer, Berlin, 1982. (1982) | MR 0693110 | Zbl 0509.34062

56. J. Dubois; P. Morales Structure de l’ensemble des solutions du probléme dee Cauchy sous le conditions de Carathéodory, Ann. Sci. Math. Quebec 7 (1983), 5–27. (1983) | MR 0699983

57. G. Dylawerski; L. Górniewicz A remark on the Krasnosielskii translation operator, Serdica Math. J. 9 (1983), 102–107. (1983) | MR 0725816

58. Z. Dzedzej; B. Gelman Dimension of the solution set for differential inclusions, Demonstration Math. 26 (1993), 149–158. (1993) | MR 1226553 | Zbl 0783.34008

59. V. V. Filippov The topological structure of spaces of solutions of ordinary differential equations, Uspekhi Mat. Nauk 48 (1993), 103–154. (in Russian) (1993) | MR 1227948

60. G. Gabor On the acyclicity of fixed point sets of multivalued maps, TMNA 14 (1999), 327–343. (1999) | MR 1766183

61. B. D. Gelman On the structure of the set of solutions for inclusions with multivalued operators, in Global Analysis - Studies and Applications III, (ed. Yu. G. Borisovich and Yu. E. Glikhlikh), Lecture Notes in Math. vol. 1334, pp. 60–78, Springer, Berlin, 1988. (1988) | MR 0964695

62. B. D. Gelman Topological properties of fixed point sets of multivalued maps, Mat. Sb. 188, No. 12 (1997), 33–56. (1997) | MR 1607367

63. A. N. Godunov A counter example to Peano’s Theorem in an infinite dimensional Hilbert space, Vestnik Mosk. Gos. Univ., Ser. Mat. Mek. 5 (1972), 31–34. (1972)

64. A. N. Godunov Peano’s Theorem in an infinite dimensional Hilbert space is false even in a weakened form, Math. Notes 15 (1974), 273–279. (1974) | MR 0352640

65. K. Goebel; W. Rzymowski An existence theorem for the equation x = f (t, x) in Banach spaces, Bull. Acad. Polon. Math. 18 (1970), 367–370. (1970) | MR 0269957

66. L. Górniewicz Topological approach to differential inclusions, in: A. Granas and H. Frigon eds., NATO ASI Series C 472, Kluwer, 1975. (1975)

67. L. Górniewicz Homological methods in fixed point theory of multivalued mappings, Dissertationes Math. 129 (1976), 1–71. (1976)

68. L. Górniewicz On the solution sets of differential inclusions, J. Math. Anal. Appl. 113 (1986), 235–244. (1986) | MR 0826673

69. L. Górniewicz Topological Fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht, 1999. (1999) | MR 1748378

70. L. Górniewicz; S. A. Marano On the fixed point set of multivalued contractions, Rend. Circ. Mat. Palermo 40 (1996), 139–145. (1996) | MR 1407087

71. L. Górniewicz S. A. Marano; M. Slosarski Fixed points of contractive multivalued maps, Proc. Amer. Math. Soc. 124 (1996), 2675–2683. (1996) | MR 1317038

72. L. Górniewicz P. Nistri; V. V. Obukovskii Differential inclusions on proximate retracts of Hilbert spaces, Int. J. Nonlinear Diff. Equs. TMA 3 (1980), 13–26. (1980)

73. L. Górniewicz; T. Pruszko On the set of solutions of the Darboux problem for some hyperbolic equations, Bull. Acad. Polon. Math. 28, No. 5-6 (1980), 279–286. (1980) | MR 0620202

74. L. Górniewicz; M. Slosarski Topological and differential inclusions, Bull. Austr. Math. Soc. 45 (1992), 177–193. (1992) | MR 1155476

75. G. Haddad Topological properties of the sets of solutions for functional differential inclusions, Nonlinear Anal. TMA 5, No. 12 (1981), 1349-1366. (1981) | MR 0646220 | Zbl 0496.34041

76. A. J. Heunis Continuous dependence of the solutions of an ordinary differential equation, J. Diff. Eqns. 54 (1984), 121–138. (1984) | MR 0757289 | Zbl 0547.34007

77. C. J. Himmelberg; F. S. Van Vleck On the topological triviality of solution sets, Rocky Mountain J. Math. 10 (1980), 247–252. (1980) | MR 0573874 | Zbl 0456.34004

78. C. J. Himmelberg; F. S. Van Vleck A note on the solution sets of differential inclusions, Rocky Mountain J. Math. 12 (1982), 621–625. (1982) | MR 0683856 | Zbl 0531.34007

79. T. S. Hu; N. S. Papageorgiou On the topological regularity of the solution set of differential inclusions with constrains, J. Diff. Equat. 107 (1994), 280–289. (1994) | MR 1264523

80. M. Hukuhara Sur les systémes des équations differentielles ordinaires, Japan J. Math. 5 (1928), 345–350. (1928)

81. D. M. Hyman On decreasing sequence of compact absolute retracts, Fund. Math. 64 (1959), 91–97. (1959) | MR 0253303

82. J. Jarník; J. Kurzweil On conditions on right hand sides of differential relations, Časopis pro Pěst. Mat. 102 (1977), 334–349. (1977) | MR 0466702

83. M. I. Kamenskii On the Peano Theorem in infinite dimensional spaces, Mat. Zametki 11, No. 5 (1972), 569–576. (1972) | MR 0304808

84. M. I. Kamenskii; V. V. Obukovskii Condensing multioperators and periodic solutions of parabolic functional - differential inclusions in Banach spaces, Nonlinear Anal. TMA 20 (1991), 781–792. (1991) | MR 1214743

85. R. Kannan J. J. Nieto; M. B. Ray A class of nonlinear boundary value problems without Landesman–Lazer condition, J. Math. Anal. Appl. 105 (1985), 1–11. (1985) | MR 0773569

86. A. Kari On Peano’s Theorem in locally convex spaces, Studia Math. 73, No. 3 (1982), 213–223. (1982) | MR 0675425 | Zbl 0507.34047

87. W. G. Kelley A Kneser theorem for Volterra integral equations, Proc. Amer. Math. Soc. 40, No. 1 (1973), 183–190. (1973) | MR 0316983 | Zbl 0244.45003

88. M. Kisielewicz Multivalued differential equations in separable Banach spaces, J. Optim. Th. Appl. 37, No. 2 (1982), 231–249. (1982) | MR 0663523 | Zbl 0458.34008

89. H. Kneser Über die Lösungen eine system gewöhnlicher differential Gleichungen das der lipschitzchen Bedingung nicht genügt, S. B. Preuss. Akad. Wiss. Phys. Math. Kl. 4 (1923), 171–174. (1923)

90. A. Kolmogorov; S. Fomin Elements of the Theory of Functions and Functional Analysis, Graylock, New York, 1957. (1957) | MR 0085462

91. M. A. Krasnoselskii P. P. Zabreiko Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Heidelberg 1984. (1984) | MR 0736839

92. W. Kryszewski Topological and approximation methods in the degree theory of set-valued maps, Dissertationes Math. 336 (1994), 1–102. (1994) | MR 1307460

93. P. Krbec; J. Kurzweil Kneser’s theorem for multivalued, differential delay equations, Časopis pro Pěst. Mat. 104, No. 1 (1979), 1–8. (1979) | MR 0523570 | Zbl 0405.34059

94. Z. Kubíček A generalization of N. Aronszajn’s theorem on connectedness of the fixed point set of a compact mapping, Czech. Math. J. 37, No. 112 (1987), 415–423. (1987) | MR 0904769

95. Z. Kubíček On the structure of the fixed point sets of some compact maps in the Fréchet space, Math. Bohemica 118 (1993), 343–358. (1993)

96. Z. Kubíček On the structure of the solution set of a functional differential system on an unbounded interval, Arch. Math. (Brno) 35 (1999), 215–228. (1999) | MR 1725839

97. I. Kubiaczyk Structure of the sets of weak solutions of an ordinary differential equation in a Banach space, Ann. Polon. Math. 44, No. 1 (1980), 67–72. (1980) | MR 0764805

98. I. Kubiaczyk Kneser’s Theorem for differential equations in Banach spaces, J. Diff. Equs. 45, No. 2 (1982), 139–147. (1982) | MR 0665991

99. I. Kubiaczyk; S. Szufla Kneser’s Theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd) (NS) 32, No. 46 (1982), 99–103. (1982) | MR 0710975

100. A. Lasota; J. A. Yorke The generic property of existence of solutions of differential equations in Banach spaces, J. Diff. Equs. 13 (1973), 1–12. (1973) | MR 0335994

101. J. M. Lasry; R. Robert Analyse Non Linéaire Multivoque, Cahiers de Math. de la Decision, Paris, No. 7611, 1977. (1977)

102. J. M. Lasry; R. Robert Acyclicité de l’ensemble des solutions de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 282, No. 22A (1976), 1283–1286 | MR 0436195

103. T. C. Lim On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436–441. (1985) | MR 0805266

104. T. Ma Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. XCII (1972), 1–47. (1972) | MR 0309103

105. S. Marano; V. Staicu On the set of solutions to a class of nonconvex nonclosed differential inclusions, Acta Math. Hungarica 76 (1997), 287–301. (1997) | MR 1459237 | Zbl 0907.34010

106. A. Margheri; P. Zecca A note on the topological structure of solution sets of Sturm–Liouville problems in Banach spaces, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Math. Nat., (to appear).

107. H. Monch Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. TMA 4 (1980), 985–999. (1980) | MR 0586861

108. H. Monch; G. Von Harten On the Cauchy problem for ordinary differential equations in Banach spaces, Arch. Math. 39 (1982), 153–160. (1982) | MR 0675655

109. A. M. Muhsinov On differential inclusions in a Banach space, Soviet Math. Dokl. 15 (1974), 1122–1125. (1974)

110. J. J. Nieto Periodic solutions of nonlinear parabolic equations, J. Diff. Equs. 60, No. 1 (1985), 90–102. (1985) | MR 0808259 | Zbl 0537.35049

111. J. J. Nieto Nonuniqueness of solutions of semilinear elliptic equations at resonance, Boll. Un. Mat. Ital. 6, 5-A, No. 2, (1986), 205–210. (1986) | MR 0850289

112. J. J. Nieto Structure of the solution set for semilinear elliptic equations, Colloq. Math. Soc. Janos Bolyai, 47 (1987), 799–807. (1987) | MR 0890578 | Zbl 0654.35035

113. J. J. Nieto Hukuhara–Kneser property for a nonlinear Dirichlet problem, J. Math. Anal. Appl. 128 (1987), 57–63. (1987) | MR 0915966 | Zbl 0648.34019

114. J. J. Nieto Decreasing sequences of compact absolute retracts and nonlinear problems, Boll. Un. Mat. Ital. 2-B, No. 7 (1988), 497–507. (1988) | MR 0963315 | Zbl 0667.47035

115. J. J. Nieto Aronszajn’s theorem for some nonlinear Dirichlet problem, Proc. Edinburg Math. Soc. 31 (1988), 345–351. (1988) | MR 0969064

116. J. J. Nieto Nonlinear second order periodic value problems with Carathéodory functions, Appl. Anal. 34 (1989), 111–128. (1989)

117. J. J. Nieto Periodic Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation, Ann. Polon. Math. 54, No. 2 (1991), 111–116. (1991) | MR 1104733 | Zbl 0737.35032

118. J. J. Nieto; L. Sanchez Periodic boundary value problems for some Duffing equations, Diff. and Int. Equs. 1, No. 4 (1988), 399–408. (1988) | MR 0945817

119. V. V. Obukhovskii Semilinear functional differential inclusions in a Banach space and controlled parabolic systems, Soviet J. Automat. Inform. Sci. 24, No. 3 (1991), 71–79. (1991) | MR 1173399

120. C. Olech On the existence and uniqueness of solutions of an ordinary differential equation in the case of a Banach space, Bull. Acad. Polon. Math. 8 (1969), 667–673. (1969) | MR 0147733

121. N. S. Papageorgiou Kneser’s Theorem for differential equations in Banach spaces, Bull. Austral. Math. Soc. 33, No. 3 (1986), 419–434. (1986) | MR 0837488

122. N. S. Papageorgiou On the solution set of differential inclusions in a Banach space, Appl. Anal. 25, No. 4 (1987), 319–329. (1987) | MR 0912190

123. N. S. Papageorgiou A property of the solution set of differential inclusions in Banach spaces with a Carathéodory orientor field, Appl. Anal. 27, No. 4 (1988), 279–287. (1988) | MR 0936472

124. N. S. Papageorgiou On the solution set of differential inclusions with state constraints, Appl. Anal. 31 (1989), 279–289. (1989) | MR 1017517 | Zbl 0698.34015

125. N. S. Papageorgiou Convexity of the orientor field and the solution set of a class of evolution inclusions, Math. Slovaca 43 (1993), no. 5, 593–615. (1993) | MR 1273713

126. N. S. Papageorgiou On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type, Comment. Math. Univ. Carolin. 34 (1993), no. 4, 673–687. (1993) | MR 1263796 | Zbl 0792.34014

127. N. S. Papageorgiou A property of the solution set of nonlinear evolution inclusions with state constraints, Math. Japon. 38 (1993), no. 3, 559–569. (1993) | MR 1221027 | Zbl 0777.34043

128. N. S. Papageorgiou On the solution set of nonlinear evolution inclusions depending on a parameter, Publ. Math. Debrecen 44 (1994), no. 1–2, 31–49. (1994) | MR 1269967 | Zbl 0824.34018

129. N. S. Papageorgiou On the solution set of nonconvex subdifferential evolution inclusions, Czechoslovak Math. J. 44 (1994), no. 3, 481–500. (1994) | MR 1288166 | Zbl 0868.34010

130. N. S. Papageorgiou On the topological regularity of the solution set of differential inclusions with constraints, J. Diff. Equs. 107 (1994), no. 2, 280–289. (1994) | MR 1264523 | Zbl 0796.34017

131. N. S. Papageorgiou On the topological properties of the solution set of evolution inclusions involving time-dependent subdifferential operators, Boll. Un. Mat. Ital. 9 (1995), no. 2, 359–374. (1995) | MR 1333967 | Zbl 0845.34066

132. N. S. Papageorgiou On the properties of the solution set of semilinear evolution inclusions, Nonlinear Anal. TMA 24 (1995), no. 12, 1683–1712. (1995) | MR 1330643 | Zbl 0831.34014

133. N. S. Papageorgiou Topological properties of the solution set of integrodifferential inclusions, Comment. Math. Univ. Carolin. 36 (1995), no. 3, 429–442. (1995) | MR 1364483 | Zbl 0836.34019

134. N. S. Papageorgiou On the solution set of nonlinear integrodifferential inclusions in $R^N$, , Math. Japon. 46 (1997), no. 1, 117–127. (1997) | MR 1466124

135. N. S. Papageorgiou Topological properties of the solution set of a class of nonlinear evolutions inclusions, Czechoslovak Math. J. 47 (1997), no. 3, 409–424. (1997) | MR 1461421

136. N. S. Papageorgiou On the structure of the solution set of evolution inclusions with time-dependent subdifferentials, Rend. Sem. Mat. Univ. Padova 97 (1997), 163–186. (1997) | MR 1476169 | Zbl 0893.34060

137. N. S. Papageorgiou; F. Papalini On the structure of the solution set of evolution inclusions with time-dependent subdifferentials, Acta Math. Univ. Comenian. (N.S.) 65 (1996), no. 1, 33–51. (1996) | MR 1422293 | Zbl 0865.34049

138. N. S. Papageorgiou N. Shahzad Properties of the solution set of nonlinear evolution inclusions, Appl. Math. Optim. 36 (1997), no. 1, 1–20. (1997) | MR 1446789

139. G. Peano Sull’integrabilité delle equazioni differenziali del primo ordine, Atti della Reale Accad. dell Scienze di Torino 21 (1886), 677–685.

140. G. Peano Démonstration de l’integrabilite des équations differentielles ordinaires, Mat. Annalen 37 (1890), 182–238.

141. W. V. Petryshyn Note on the structure of fixed point sets of 1-set–contractions, Proc. Amer. Math. Soc. 31 (1972), 189–194. (1972) | MR 0285944

142. G. Pianigiani Existence of solutions of ordinary differential equations in Banach spaces, Bull. Acad. Polon. Math. 23 (1975), 853–857. (1975) | MR 0393710

143. S. Plaskacz On the solution sets for differential inclusions, Boll. Un. Mat. Ital. 7, 6-A (1992), 387–394. (1992) | MR 1196133 | Zbl 0774.34012

144. J. Saint Raymond Multivalued contractions, Set-Valued Analysis 2, 4 (1994), 559–571. (1994) | MR 1308485 | Zbl 0820.47065

145. B. Ricceri Une propriété topologique de l’ensemble des points fixes d’une contraction multivoque à valeurs convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987), 283–286. (1987) | MR 0999821

146. B. N. Sadovskii On measures of noncompactness and contracting operators, in Problems in the Mathematical Analysis of Complex Systems, second edition, Voronezh (1968), 89–119. (in Russian) (1968) | MR 0301582

147. B. N. Sadovskii Limit-compact and condensing operators, Uspekh. Mat. Nauk 27 (1972), 1–146. (in Russian) (1972) | MR 0428132

148. K. Schmitt; P. Volkmann Boundary value problems for second order differential equations in convex subsets in a Banach space, Trans. Amer. Math. Soc. 218 (1976), 397–405. (1976) | MR 0397110

149. V. Šeda Fredholm mappings and the generalized boundary value problem, Diff. Integral Equs. 8 (1995), 19–40. (1995) | MR 1296108

150. V. Šeda Generalized boundary value problems and Fredholm mappings, Nonlinear Anal. TMA 30 (1997), 1607-1616. (1997) | MR 1490083

151. V. Šeda Rδ -set of solutions to a boundary value problem, TMNA, (to appear).

152. J. S. Shin Kneser type theorems for functional differential equations in a Banach space, Funk. Ekvacioj 35 (1992), 451–466. (1992) | MR 1199467 | Zbl 0785.34049

153. Z. Song Existence of generalized solutions for ordinary differential equations in Banach spaces, 3. Math. Anal. Appl. 128 (1987), 405–412. (1987) | MR 0917374 | Zbl 0666.34068

154. W. Sosulski Compactness and upper semi continuity of solution set of functional differential equations of hyperbolic type, Comment. Mat. Prace. Mat. 25, No. 2 (1985), 359–362. (1985) | MR 0844652

155. V. Staicu Qualitative propeties of solutions sets to Lipschitzian differential inclusions, World Sci. Publ. (Singapore 1993), 910–914. (1993) | MR 1242362

156. S. Szufla Some remarks on ordinary differential equations in Banach spaces, Bull. Acad. Polon. Math. 16 (1968), 795–800. (1968) | MR 0239238

157. S. Szufla Measure of noncompactness and ordinary differential equations in Banach spaces, Bull Acad. Polon. Sci. 19 (1971), 831–835. (1971) | MR 0303043

158. S. Szufla Structure of the solutions set of ordinary differential equations in a Banach space, Bull. Acad. Polon. Sci. 21, No. 2 (1973), 141–144. (1973) | MR 0333390

159. S. Szufla Solutions sets of nonlinear equations, Bull. Acad. Polon. Sci. 21, No. 21 (1973), 971–976. (1973) | MR 0344959

160. S. Szufla Some properties of the solutions set of ordinary differential equations, Bull. Acad. Polon. Sci. 22, No. 7 (1974), 675–678. (1974) | MR 0355245

161. S. Szufla On the structure of solutions sets of differential and integral equations in Banach spaces, Ann. Polon. Math. 34 (1977), 165–177. (1977) | MR 0463608

162. S. Szufla On the equation x = f (t, x) in Banach spaces, Bull. Acad. Polon. Sci. 26, No. 5 (1978), 401–406. (1978) | MR 0499578

163. S. Szufla Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. Acad. Polon. Sci. 26, No. 5 (1978), 407–413. (1978) | MR 0492684

164. S. Szufla Sets of fixed points nonlinear mappings in function spaces, Funkcial. Ekvac. 22 (1979), 121–126. (1979) | MR 0551256

165. S. Szufla On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Polon. Sci. 30, No. 11–12 (1982), 507–515. (1982) | MR 0718727

166. S. Szufla On the equation x = f (t, x) in locally convex spaces, Math. Nachr. 118 (1984), 179–185. (1984) | MR 0773619

167. S. Szufla Existence theorems for solutions of integral equations in Banach spaces, Proc. Conf. Diff. Equs. and Optimal Control, Zielona Góra (1985), 101–107. (1985) | MR 0937926

168. S. Szufla On the application of measure of noncompactness to differential and integral equations in a Banach space, Fasc. Math. 18 (1988), 5–11. (1988) | MR 0988763

169. P. Talaga The Hukuhara–Kneser property for parabolic systems with nonlinear boundary conditions, J. Math. Anal. 79 (1981), 461–488. (1981) | MR 0606494 | Zbl 0457.35042

170. P. Talaga The Hukuhara–Kneser property for quasilinear parabolic equations, Non-linear Anal. TMA 12, No. 3 (1988), 231–245. (1988) | MR 0928558 | Zbl 0678.35052

171. A. A. Tolstonogov On differential inclusions in a Banach space and continuous selectors, Dokl. Akad. Nauk SSSR 244 (1979), 1088–1092. (1979) | MR 0522051

172. A. A. Tolstonogov On properties of solutions of differential inclusions in a Banach space, Dokl. Akad. Nauk SSSR 248 (1979), 42–46. (1979) | MR 0549368 | Zbl 0441.34045

173. A. A. Tolstonogov On the structure of the solution set for differential inclusions in a Banach space, Math. Sbornik, 46 (1983), 1–15. (in Russian) (1983) | Zbl 0564.34065

174. G. Vidossich On Peano-phenomenon, Bull. Un. Math. Ital. 3 (1970), 33–42. (1970) | MR 0271793 | Zbl 0179.47101

175. G. Vidossich On the structure of the set of solutions of nonlinear equations, J. Math. Anal. Appl. 34 (1971), 602–617. (1971) | MR 0283645

176. G. Vidossich A fixed point theorem for function spaces, J. Math. Anal. Appl. 36 (1971), 581–587. (1971) | MR 0285945

177. G. Vidossich Existence, uniqueness and approximation of fixed points as a generic property, Bol. Soc. Brasil. Mat. 5 (1974), 17–29. (1974) | MR 0397710

178. G. Vidossich Two remarks on global solutions of ordinary differential equations in the real line, Proc. Amer. Math. Soc. 55 (1976), 111–115. (1976) | MR 0470291 | Zbl 0339.34004

179. T. Wazewski Sur l’existence et l’unicité des integrales des équations différentielles ordinaires au cas de l’espace de Banach, Bull. Acad. Polon. Math. 8 (1960), 301–305. (1960) | MR 0131038 | Zbl 0093.08405

180. J. A. Yorke Spaces of solutions, Lect. Notes Op. Res. Math. Econ. vol. 12, Springer-Verlag, (1969), 383–403. (1969) | MR 0361294 | Zbl 0188.15502

181. J. A. Yorke A continuous differential equation in a Hilbert space without existence, Funkc. Ekvac. 13 (1970), 19–21. (1970) | MR 0264196

182. R. R. Akhmerov The structure of the solution set of a boundary value problem for a one-dimensional stationary equation of variable type, Chisl. Metody Mekh. Sploshn. Sredy, 15 (1984), 20–30. (1984) | MR 0813536

183. J. C. Alexander I. Massabò; J. Pejsachowicz On the connectivity properties of the solution set of infinitely-parametrized families of vector fields, Boll. Un. Mat. Ital.A (6), 1 (1982), 309–312. (1982) | MR 0663297

184. A. Anguraj; K. Balachandran On the solution sets of differential inclusion in Banach spaces, Tamkang J. Math., 23 (1992), 59–65. (1992) | MR 1164448 | Zbl 0760.34018

185. G. Anichini; G. Conti How to make use of the solution set to solve boundary value problems, Recent Trends in Nonlinear Analysis, Birkhäuser, Basel, 2000, 15–25. | MR 1763129 | Zbl 0949.34009

186. G. Anichini G. Conti; P. Zecca Using solution sets for solving boundary value problems for ordinary differential equations, Nonlinear Anal., 17 (1991), 465–472. (1991) | MR 1124119

187. M. T. Ashordiya The structure of the solution set of the Cauchy problem for a system of generalized ordinary differential equations, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 17 (1986), 5–16. (1986) | MR 0853272

188. E. P. Avgerinos; N. S. Papageorgiou On the solution set of maximal monotone differential inclusions in $\mathbb R^m$, Math. Japon., 38 (1993), 91–110. (1993) | MR 1204188

189. E. P. Avgerinos; N. S. Papageorgiou Topological properties of the solution set of integrodifferential inclusions, Comment. Math. Univ. Carolin., 36 (1995), 429–442. (1995) | MR 1364483 | Zbl 0836.34019

190. G. Bartuzel; A. Fryszkowski A topological property of the solution set to the Sturm–Liouville differential inclusions, Demonstratio Math., 28 (1995), 903–914. (1995) | MR 1392243 | Zbl 0886.47026

191. J. W. Bebernes Solution set properties for some nonlinear parabolic differential equations, Equadiff IV (Proc. Czechoslovak Conf. Differential Equations and their Applications, Prague, 1977) Springer, Berlin, 1979, 25–30. (1977) | MR 0535319

192. V. I. Blagodatskikh; P. Ndiĭ Convexity of the solution set of a differential inclusion, Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., (1998), 21–22. (1998) | MR 1657954

193. F. S. De Blasi G. Pianigiani; V. Staicu On the solution sets of some nonconvex hyperbolic differential inclusions, Czechoslovak Math. J., 45 (1995), 107–116. (1995) | MR 1314533

194. D. Bugajewska On implicit Darboux problem in Banach spaces, Bull. Austral. Math. Soc., 56 (1997), 149–156. (1997) | MR 1464057

195. D. Bugajewska On the equation of nth order and the Denjoy integral, Nonlinear Anal., 34 (1998), 1111–1115. (1998) | MR 1637221

196. D. Bugajewska A note on the global solutions of the Cauchy problem in Banach spaces, Acta Math. Hung., 88 (2000), 341–346. | MR 1789046

197. D. Bugajewska On the structure of solution sets of differential equations in Banach spaces, Math. Slovaca, 50 (2000), 463–471. | MR 1857301

198. D. Bugajewska; D. Bugajewski On the equation $x_{ap}^{(n)} = f (t, x)$, Czech. Math. Journal, 46 (1996), 325–330. (1996) | MR 1388620

199. D. Bugajewska; D. Bugajewski On nonlinear equations in Banach spaces and axiomatic measures of noncompactness, Funct. Differ. Equ., 5 (1998), 57–68. (1998) | MR 1681184 | Zbl 1049.45013

200. D. Bugajewski On the structure of the $L^{p1 ,p2}$ -solution sets of Volterra integral equations in Banach spaces, Comment. Math. Prace Mat., 30 (1991), 253–260. (1991) | MR 1122694 | Zbl 0745.45004

201. D. Bugajewski On differential and integral equations in locally convex spaces, Demonstr. Math., 28 (1995), 961–966. (1995) | MR 1392249 | Zbl 0855.34071

202. D. Bugajewski On the structure of solution sets of differential and integral equations, and the Perron integral, Proceedings of the Prague Mathematical Conference 1996, Icaris, Prague, 1997, 47–51. (1996) | MR 1703455 | Zbl 0966.34041

203. D. Bugajewski; S. Szufla Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces, Nonlinear Anal., 20 (1993), 169–173. (1993) | MR 1200387

204. D. Bugajewski; S. Szufla On the Aronszajn property for differential equations and the Denjoy integral, Comment. Math., 35 (1995), 61–69. (1995) | MR 1384852

205. T. Cardinali On the structure of the solution set of evolution inclusions with Fréchet subdifferentials, J. Appl. Math. Stochastic Anal., 13 (2000), 51–72. | MR 1751029 | Zbl 0966.34052

206. T. Cardinali A. Fiacca; N. S. Papageorgiou On the solution set of nonlinear integrodifferential inclusions in $\bold R^N$ , Math. Japon., 46 (1997), 117–127. (1997) | MR 1466124

207. C. Castaing; M. Marques Topological properties of solution sets for sweeping processes with delay, Portugal. Math., 54 (1997), 485–507. (1997) | MR 1489988 | Zbl 0895.34053

208. A. Cellina; A. Ornelas Convexity and the closure of the solution set to differential inclusions, Boll. Un. Mat. Ital. B (7), 4 (1990), 255–263. (1990) | MR 1061215 | Zbl 0719.34031

209. R. M. Colombo A. Fryszkowski T. Rzezuchowski; V. Staicu Continuous selections of solution sets of Lipschitzean differential inclusions, Funkcial. Ekvac., 34 (1991), 321–330. (1991) | MR 1130468

210. A. Constantin On the stability of solution sets for operational differential inclusions, An. Univ. Timişoara Ser. Ştiinţ. Mat., 29 (1991), 115–124. (1991) | MR 1263091 | Zbl 0799.34016

211. G. Conti V. Obukhovskiĭ; P. Zecca On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space, Topology in Nonlinear Analysis, Polish Acad. Sci., Warsaw, 1996, 159–169. (1996) | MR 1448435

212. K. Deimling On solution sets of multivalued differential equations, Appl. Anal., 30 (1988), 129–135. (1988) | MR 0967566 | Zbl 0635.34014

213. K. Deimling Bounds for solution sets of multivalued ODEs, Recent Trends in Differential Equations, World Sci. Publishing, River Edge, NJ, 1992, 127–134. (1992) | MR 1180107 | Zbl 0832.34009

214. P. Diamond; P. Watson Regularity of solution sets for differential inclusions quasi-concave in a parameter, Appl. Math. Lett., 13 (2000), 31–35. | MR 1750963 | Zbl 0944.34008

215. Y. H. Du The structure of the solution set of a class of nonlinear eigenvalue problems, J. Math. Anal. Appl., 170 (1992), 567–580. (1992) | MR 1188572 | Zbl 0784.35080

216. V. V. Filippov On the acyclicity of solution sets of ordinary differential equations, Dokl. Akad. Nauk, 352 (1997), 28–31. (1997) | MR 1445851

217. A. Gavioli On the solution set of the nonconvex sweeping process, Discuss. Math. Differential Incl., 19 (1999), 45–65. (1999) | MR 1758498 | Zbl 0954.34036

218. V. V. Goncharov Co-density and other properties of the solution set of differential inclusions with noncompact right-hand side, Discuss. Math. Differential Incl., 16 (1996), 103–120. (1996) | MR 1646626 | Zbl 0906.34012

219. T. G. Hallam; J. W. Heidel Structure of the solution set of some first order differential equations of comparison type, Trans. Amer. Math. Soc., 160 (1971), 501–512. (1971) | MR 0281995

220. G. Herzog; R. Lemmert On the structure of the solution set of $u′′ = f (t, u)$, $u(0) = u(1) = 0$, Math. Nachr., 215 (2000), 103–105. | MR 1768196 | Zbl 0953.34054

221. S. C. Hu V. Lakshmikantham; N. S. Papageorgiou On the solution set of nonlinear evolution inclusions, Dynamic Systems Appl., 1 (1992), 71–82. (1992) | MR 1154650 | Zbl 0755.34057

222. S. C. Hu V. Lakshmikantham; N. S. Papageorgiou On the properties of the solution set of semilinear evolution inclusions, Nonlinear Anal., 24 (1995), 1683–1712. (1995) | MR 1330643 | Zbl 0831.34014

223. A. G. Ibrahim; A. M. Gomaa Topological properties of the solution sets of some differential inclusions, Pure Math. Appl., 10 (1999), 197–223. (1999) | MR 1742594 | Zbl 0977.34008

224. G. Isac; G. X.-Z. Yuan Essential components and connectedness of solution set for complementarity problems, Fixed Point Theory and Applications (Chinju, 1998), Nova Sci. Publ., Huntington, NY, 2000, 35–46. (1998) | MR 1761212

225. N. A. Izobov The measure of the solution set of a linear system with the largest lower exponent, Differentsial’nye Uravneniya, 24 (1988), 2168–2170, 2207. (1988) | MR 0982150

226. M. Kamenskiĭ V. Obukhovskiĭ; P. Zecca Method of the solution sets for a quasilinear functional-differential inclusion in a Banach space, Differential Equations Dynam. Systems, 4 (1996), 339–350. (1996) | MR 1655630

227. R. Kannan; D. O’Regan A note on the solution set of integral inclusions, J. Integral Equations Appl., 12 (2000), 85–94. | MR 1760899

228. Z. Kánnai; P. Tallos Stability of solution sets of differential inclusions, Acta Sci. Math. (Szeged), 61 (1995), 197–207. (1995) | MR 1377359

229. M. Kisielewicz Continuous dependence of solution sets for generalized differential equations of neutral type, Atti Accad. Sci. Istit. Bologna Cl. Sci. Fis. Rend. (13), 8 (1980/81), 191–195. (1980) | MR 0695193

230. M. Kisielewicz Compactness and upper semicontinuity of solution set of generalized differential equation in a separable Banach space, Demonstratio Math., 15 (1982), 753–761. (1982) | MR 0693538

231. M. Kisielewicz Properties of solution set of stochastic inclusions, J. Appl. Math. Stochastic Anal., 6 (1993), 217–235. (1993) | MR 1238600 | Zbl 0796.93106

232. M. Kisielewicz Quasi-retractive representation of solution sets to stochastic inclusions, J. Appl. Math. Stochastic Anal., 10 (1997), 227–238. (1997) | MR 1468117 | Zbl 1043.34505

233. B. S. Klebanov; V. V. Filippov On the acyclicity of the solution set of the Cauchy problem for differential equations, Mat. Zametki, 62 (1997). (1997) | MR 1635158

234. P. Korman The global solution set for a class of semilinear problems, J. Math. Anal. Appl., 226 (1998), 101–120. (1998) | MR 1646477 | Zbl 0911.34016

235. A. V. Lakeev; S. I. Noskov Description of the solution set of a linear equation with an interval-defined operator and right-hand side, Dokl. Akad. Nauk, 330 (1993), 430–433. (1993) | MR 1241970

236. V. P. Maksimov On the parametrization of the solution set of a functional-differential equation, Funct. Differ. Equ., Perm. Politekh. Inst., Perm, (1988), 14–21. (in Russian) (1988) | MR 1066717

237. V. P. Maksimov On the parametrization of the solution set of a functional-differential equation, Funct. Differ. Equ., 3 (1996), 371–378. (1996) | MR 1459318 | Zbl 0881.34076

238. A. Margheri; P. Zecca Solution sets and boundary value problems in Banach spaces, Topol. Methods Nonlinear Anal., 2 (1993), 179–188. (1993) | MR 1245485 | Zbl 0799.34069

239. A. Margheri; P. Zecca Solution sets of multivalued Sturm–Liouville problems in Banach spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5 (1994), 161–166. (1994) | MR 1292571 | Zbl 0809.34026

240. J. T. Markin Stability of solution sets for generalized differential equations, J. Math. Anal. Appl., 46 (1974), 289–291. (1974) | MR 0348218 | Zbl 0293.34004

241. M. Martelli; A. Vignoli On the structure of the solution set of nonlinear equations, Nonlinear Anal., 7 (1983), 685–693. (1983) | MR 0707077 | Zbl 0519.47037

242. I. Massabò; J. Pejsachowicz On the connectivity properties of the solution set of parametrized families of compact vector fields, J. Funct. Anal., 59 (1984), 151–166. (1984) | MR 0766486

243. P. S. Milojević On the index and the covering dimension of the solution set of semilinear equations, Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), Amer. Math. Soc., Providence, R.I., 1986, 183–205. (1983) | MR 0843608

244. P. S. Milojević On the dimension and the index of the solution set of nonlinear equations, Trans. Amer. Math. Soc., 347 (1995), 835–856. (1995) | MR 1282894

245. O. Naselli On the solution set of an equation of the type $f (t, \Phi(u)(t)) = 0$, Set-Valued Anal., 4 (1996), 399–405. (1996) | MR 1422403 | Zbl 0873.47041

246. J. J. Nieto On the structure of the solution set for first order differential equations, Appl. Math. Comput., 16 (1985), 177–187. (1985) | MR 0780794

247. J. J. Nieto Structure of the solution set for semilinear elliptic equations, Differential Equations: Qualitative Theory, Vol. I, II (Szeged, 1984), North-Holland, Amsterdam, 1987, 799–807. (1984) | MR 0890578

248. W. Orlicz; S. Szufla On the structure of $L^\varphi $-solution sets of integral equations in Banach spaces, Studia Math., 77 (1984), 465–477. (1984) | MR 0751767

249. V. G. Osmolovskiĭ The local structure of the solution set of a first-order nonlinear boundary value problem with constraints at points, Sibirsk. Mat. Zh., 27 (1986), 140–154, 206. (1986) | MR 0873718

250. N. S. Papageorgiou On the solution set of evolution inclusions driven by time dependent subdifferentials, Math. Japon., 37 (1992), 1087–1099. (1992) | MR 1196384 | Zbl 0810.34059

251. F. Papalini Properties of the solution set of evolution inclusions, Nonlinear Anal., 26 (1996), 1279–1292. (1996) | MR 1376103 | Zbl 0849.34017

252. M. P. Pera A topological method for solving nonlinear equations in Banach spaces and some related global results on the structure of the solution sets, Rend. Sem. Mat. Univ. Politec. Torino, 41 (1983), 9–30. (1983) | MR 0778859 | Zbl 0568.47038

253. E. S. Polovinkin The properties of continuity and differentiation of solution sets of Lipschitzean differential inclusions Modeling, Estimation and Control of Systems with Uncertainty (Sopron, 1990), Birkhäuser, Boston, 1991, 349–360. (1990) | MR 1132282

254. B. Ricceri On the topological dimension of the solution set of a class of nonlinear equations, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 65–70. (1997) | MR 1461399 | Zbl 0884.47043

255. L. E. Rybiński A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions, J. Math. Anal. Appl., 160 (1991), 24–46. (1991)

256. E. Serra M. Tarallo; S. Terracini On the structure of the solution set of forced pendulum-type equations, J. Differ. Equ., 131 (1996), 189–208. (1996) | MR 1419011

257. A. Sghir On the solution set of second-order delay differential inclusions in Banach spaces, Ann. Math. Blaise Pascal, 7 (2000), 65–79. | MR 1769982 | Zbl 0958.34048

258. W. Song The solution set of a differential inclusion on a closed set of a Banach space, Appl. Math., Warsaw, 23 (1995), 13–23. (1995) | MR 1330055 | Zbl 0831.34017

259. W. Sosulski Compactness and upper semicontinuity of solution set of functional-differential equations of hyperbolic type, Comment. Math. Prace Mat., 25 (1985), 359–362. (1985) | MR 0844652 | Zbl 0614.35061

260. J. S. Spraker; D. C. Biles A comparison of the Carathéodory and Filippov solution sets, J. Math. Anal. Appl., 198 (1996), 571–580. (198 ) | MR 1376281

261. V. Staicu Continuous selections of solution sets to evolution equations, Proc. Amer. Math. Soc., 113 (1991), 403–413. (1991) | MR 1076580 | Zbl 0737.34011

262. V. Staicu On the solution sets to nonconvex differential inclusions of evolution type, Discrete Contin. Dynam. Systems, 2 (1998), 244–252. (1998) | MR 1722473

263. V. Staicu; H. Wu Arcwise connectedness of solution sets to Lipschitzean differential inclusions, Boll. Un. Mat. Ital. A (7), 5 (1991), 253–256. (1991) | MR 1120387 | Zbl 0742.34018

264. S. Szufla Solutions sets of non-linear integral equations, Funkcial. Ekvac., 17 (1974), 67–71. (1974) | MR 0344827

265. S. Szufla On the structure of solution sets of nonlinear equations, Differential Equations and Optimal Control (Kalsk, 1988), Higher College Engrg., Zielona Góra, 1989, 33–39. (1988) | MR 1067550

266. A. A. Tolstonogov On the density and “being boundary” for the solution set of a differential inclusion in a Banach space, Dokl. Akad. Nauk SSSR, 261 (1981), 293–296. (1981) | MR 0638919

267. A. A. Tolstonogov The solution set of a differential inclusion in a Banach space. II, Sibirsk. Mat. Zh., 25 (1984), 159–173. (1984) | MR 0732775

268. A. A. Tolstonogov; P. I. Chugunov The solution set of a differential inclusion in a Banach space. I, Sibirsk. Mat. Zh., 24 (1983), 144–159. (1983) | MR 0731051

269. G. M. Troianiello Structure of the solution set for a class of nonlinear parabolic problems, Nonlinear Parabolic Equations: Qualitative Properties of Solutions (Rome, 1985), Longman Sci. Tech., Harlow, 1987, 219–225. (1985) | MR 0901112

270. H. D. Tuan On the continuous dependence on parameter of the solution set of differential inclusions, Z. Anal. Anwendungen, 11 (1992), 215–220. (1992) | MR 1265929 | Zbl 0783.34010

271. Ya. I. Umanskiĭ On a property of the solution set of differential inclusions in a Banach space, Differentsial’nye Uravneniya, 28 (1992), 1346–1351, 1468. (1992) | MR 1203847

272. V. Veliov Convergence of the solution set of singularly perturbed differential inclusions, Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal., 30 (1997), 5505–5514. (1996) | MR 1726055

273. Z. H. Wang Existence of solutions for parabolic type evolution differential inclusions and the property of the solution set, Appl. Math. Mech., 20 (1999), 314–318. (1999) | MR 1704410

274. Z. K. Wei On the existence of unbounded connected branches of solution sets of a class of semilinear operator equations, Bull. Soc. Math. Belg. Sér. B, 38 (1986), 14–30. (1986) | MR 0871300

275. Q. J. Zhu On the solution set of differential inclusions in a Banach space, J. Differ. Equ., 93 (1991), 213–237. (1991) | MR 1125218

276. V. G. Zvyagin The structure of the solution set of a nonlinear elliptic boundary value problem under fixed boundary conditions, Topological and Geometric Methods of Analysis, Voronezh. Gos. Univ., Voronezh, 1989, 152–158, 173. (in Russian) (1989) | MR 1047679