Oscillation Theory of Linear Difference Equations
Došlý, Ondřej
Archivum Mathematicum, Tome 036 (2000), p. 329-342 / Harvested from Czech Digital Mathematics Library
Publié le : 2000-01-01
Classification:  39-01,  39A10,  39A11
@article{107749,
     author = {Ond\v rej Do\v sl\'y},
     title = {Oscillation Theory of Linear Difference Equations},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {329-342},
     zbl = {1090.39001},
     mrnumber = {1822804},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107749}
}
Došlý, Ondřej. Oscillation Theory of Linear Difference Equations. Archivum Mathematicum, Tome 036 (2000) pp. 329-342. http://gdmltest.u-ga.fr/item/107749/

1. R. P. Agarwal Difference Equations and Inequalities: Theory, Methods and Applications, Second Edition, Pure and Applied Mathematics, M. Dekker, New York - Basel - Hong Kong, 2000. | MR 1740241 | Zbl 0952.39001

2. C. D. Ahlbrandt A. C. Peterson Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, Boston, 1996. (1996) | MR 1423802

3. D. Anderson Discrete trigonometric matrix functions, Panamer. Math. J. 7 (1997), 39-54. (1997) | MR 1427019 | Zbl 0888.39010

4. J. H. Barrett A Prüfer transformation for matrix differential equations, Proc. Amer. Math. Soc. 8 (1957), 510-518. (1957) | MR 0087821 | Zbl 0079.10603

5. M. Bohner Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions, J. Math. Anal. Appl. 199 (1996), 804–826. (199 ) | MR 1386607

6. M. Bohner O. Došlý Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math. 27 (1997), 707–743. (1997) | MR 1490271

7. M. Bohner O. Došlý Trigonometric transformation of symplectic difference systems, J. Differential Equ. 163 (2000), 113-129. | MR 1755071

8. M. Bohner O. Došlý Discrete Prüfer transformation, to appear in Proc. Amer. Math. Soc. | MR 1838796

9. W. A. Coppel Disconjugacy, Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. (1971) | MR 0460785 | Zbl 0224.34003

10. O. Došlý On transformations of self-adjoint differential systems and their reciprocals, Ann. Polon. Math. 50 (1990), 223-234. (1990) | MR 1064996

11. O. Došlý Oscillation criteria for higher order Sturm-Liouville difference equations, J. Differ. Equations Appl. 4 (1998), 425-450. (1998) | MR 1665162

12. O. Došlý Methods of oscillation theory of half-linear second order differential equations, Czech. Math. J. 50 (125) (2000), 657-671. | MR 1777486

13. O. Došlý R. Hilscher A class of Sturm-Liouville difference equations: (non)oscillation constants and property BD, submitted.

14. O. Došlý J. Osička Kneser-type oscillation criteria for self-adjoint, two term, differential equations, Georgian J. Math., 2 (1995), 241-258. (1995) | MR 1334880

15. O. Došlý J. Osička Oscillation and nonoscillation of higher order self-adjoint differential equations, to appear in Czech. Math. J. | MR 1940063

16. O. Došlý P. Řehák Nonoscillation criteria for half-linear second order difference equations, to appear in Comput. Appl. Math. | MR 1838006

17. S. N. Elaydi An Introduction to Difference Equations, Second Edition, Springer Verlag, 2000. | MR 1711587 | Zbl 1071.39001

18. U. Elias Oscillation Theory of Two-Term Differential equations, Kluwer, Dordrecht-Boston-London, 1997. (1997) | MR 1445292 | Zbl 0878.34022

19. I. M. Gelfand S. V. Fomin Calculus of Variations, Prentice Hall, Engelwood, 1963. (1963) | MR 0160139

20. B. Harris R. J. Kruger W. T.Trench Trench’s canonical form for a disconjugate n-th order linear difference equations, Panamer. Math. J. 8 (1998), 55-71. (1998) | MR 1642648

21. P. Hartman Difference equations: disconjugacy, principal solutions, Green’s function, complete monotonicity, Trans. Amer. Math. Soc. 246 (1978), 1–30. (1978) | MR 0515528

22. W. G. Kelley A. Peterson Difference Equations: An Introduction with Applications, Acad. Press, San Diego, 1991. (1991) | MR 1142573

23. S. Peňa Discrete spectra criteria for singular difference operators, Math. Bohem. 124 (1999), 35–44. (1999) | MR 1687425

24. G. Polya On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1924), 312-324. (1924) | MR 1501228

25. H. Prüfer Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), 499-518. (1926) | MR 1512291

26. W. T. Reid Sturmian Theory for Ordinary Differential Equations, Springer Verlag, New York-Heidelberg-Berlin 1980. (1980) | MR 0606199 | Zbl 0459.34001

27. W. F. Trench Canonical forms and principal systems of general disconjugate equations, Trans. Amer. Math. Soc. 189 (1974), 319-327. (1974) | MR 0330632