Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$
Guha, Partha
Archivum Mathematicum, Tome 036 (2000), p. 305-312 / Harvested from Czech Digital Mathematics Library

The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric.

Publié le : 2000-01-01
Classification:  35Q53,  37K10,  37K65,  58D05
@article{107745,
     author = {Partha Guha},
     title = {Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {305-312},
     zbl = {1049.37045},
     mrnumber = {1811175},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107745}
}
Guha, Partha. Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$. Archivum Mathematicum, Tome 036 (2000) pp. 305-312. http://gdmltest.u-ga.fr/item/107745/

Antonowicz M.; Fordy A. Coupled KdV equation with multi-Hamiltonian structures, Physica 28D (1987), 345–357. (1987) | MR 0914454

Arbarello E.; De Concini C.; Kac V. G.; Procesi C. Moduli space of curves and representation theory, Comm. Math. Phys. 117 (1988), 1–36. (1988) | MR 0946992

Arnold V. I. Mathematical methods of classical mechanics, Second edition, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, 1989. (1989) | MR 0997295

Camassa R.; Holm D. A completely integrable dispersiveshallow water equation with peaked solutions, Phys. Rev. Lett. 71 (1993), 1661–1664. (1993) | MR 1234453

Cendra H.; Holm D.; Marsden J.; Ratiu T. Lagrangian reduction, the Euler-Poincar’e equations and semidirect products, to appear in the AMS Arnold Volume II, and all other references therein.

Ebin D.; Marsden J. Groups of diffeomorphisms and themotion of an incompressible fluid, Ann. Math. 92 (1970), 102–163. (1970) | MR 0271984

Guha P. Diffeomorphism with some Sobolev metric, geodesic flow and integrable systems, IHES/M/98/69.

Harnad J.; Kupershmidt B. A. Symplectic geometries on $T^{\ast }G$, Hamiltonian group actions and integrable systems, J. Geom. Phys. 16 (1995), 168-206. (1995) | MR 1330839 | Zbl 0829.53027

Ito M. Symmetries and conservation laws of a coupled nonlinear wave equation, Phys. Lett. 91A (1982), 335–338. (1982) | MR 0670869

Kirillov A. A. Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments, Lect. Notes in Math. 970 (1982), Springer-Verlag, 101–123. (1982) | MR 0699803 | Zbl 0498.22017

Kirillov A. A. Orbits of the group of diffeomorphisms of a circle and local superalgebras, Func. Anal. Appl. 15 (1980), 135–137. (1980)

Kouranbaeva S. The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, Math-ph/9807021. | Zbl 0958.37060

Marcel P.; Ovsienko V.; Roger C. Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouvilleoperators, Lett. Math. Phys. 40 (1997), 31–39. (1997) | MR 1445965

Misiolek G. A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys. 24 (1998), 203–208. (1998) | MR 1491553 | Zbl 0901.58022

Ovsienko V. Yu.; Khesin B. A. KdV super equation as an Euler equation, Funct. Anal. Appl. 21 (1987), 329–331. (1987) | MR 0925082

Ovsienko V. Yu.; Rogers C. Extension of Virasoro group and Virasoro algebra by modules of tensor densities on $S^1$, Func. Anal. Appl.

Shkoller S. Geometry and the curvature of diffeomorphismgroups with $H^1$ metric and mean hydrodynamics, Math. AP/9807078.

Segal G. Unitary representations of some infinite dimensional groups, Comm. Math. Phys. 80 (1981), 301–342. (1981) | MR 0626704 | Zbl 0495.22017