Given a map of a product of two manifolds into a third one, one can define its jets of separated orders $r$ and $s$. We study the functor $J$ of separated $(r;s)$-jets. We determine all natural transformations of $J$ into itself and we characterize the canonical exchange $J\rightarrow J^{s;r}$ from the naturality point of view.
@article{107744, author = {Miroslav Doupovec and Ivan Kol\'a\v r}, title = {Natural transformations of separated jets}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {297-303}, zbl = {1049.58008}, mrnumber = {1811174}, language = {en}, url = {http://dml.mathdoc.fr/item/107744} }
Doupovec, Miroslav; Kolář, Ivan. Natural transformations of separated jets. Archivum Mathematicum, Tome 036 (2000) pp. 297-303. http://gdmltest.u-ga.fr/item/107744/
Jets infinitésimaux d’ordre séparé supérieur, Proc. Japan Acad. 37 (1961), 18–22. | MR 0160167 | Zbl 0840.58004
On some operations with connections, Math. Nachr. 69 (1975), 297–306. | MR 0391157
Natural Operations in Differential Geometry, Springer-Verlag, 1993. | MR 1202431
Natural transformations of higher order tangent bundles and jet spaces, Čas. pěst. mat. 114 (1989), 181–186. | MR 1063764
Introduction to the theory of semi-holonomic jets, Archivum Math. (Brno) 33 (1997), 173–189. | MR 1478771 | Zbl 0915.58004