Let $G$ be a partially ordered abelian group ($po$-group). The construction of the Lorenzen ideal $r_a$-system in $G$ is investigated and the functorial properties of this construction with respect to the semigroup $(R(G),\oplus ,\le )$ of all $r$-ideal systems defined on $G$ are derived, where for $r,s\in R(G)$ and a lower bounded subset $X\subseteq G$, $X_{r\oplus s}=X_r\cap X_s$. It is proved that Lorenzen construction is the natural transformation between two functors from the category of $po$-groups with special morphisms into the category of abelian ordered semigroups.
@article{107743, author = {Aleka Kalapodi and Angeliki Kontolatou and Ji\v r\'\i\ Mo\v cko\v r}, title = {Some properties of Lorenzen ideal systems}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {287-295}, zbl = {1047.06011}, mrnumber = {1811173}, language = {en}, url = {http://dml.mathdoc.fr/item/107743} }
Kalapodi, Aleka; Kontolatou, Angeliki; Močkoř, Jiří. Some properties of Lorenzen ideal systems. Archivum Mathematicum, Tome 036 (2000) pp. 287-295. http://gdmltest.u-ga.fr/item/107743/
Ideale in kommutativen Halbgruppen, Rec. Math. Soc. Math. Moscow 36 (1929), 401–407. (1929)
Number Theory, Academic Press, New York, 1966. (1966) | MR 0195803
Arithmetic and ideal theory of abstract multiplication, Ann. of Math. 39 (1938), 594–610. (1938) | MR 1503427
Ideal systems, Marcel Dekker, Inc, New York - Basel - Hong Hong, 1998. (1998) | MR 1828371 | Zbl 0953.13001
Les systémes d’idéaux, Dunod, Paris, 1960. (1960) | MR 0114810 | Zbl 0101.27502
Algebraic and categorical properties of $r$-ideal systems, International Journal of Mathematics and Mathematical Sciences, to appear.
Abstrakte Begründung der multiplikativen Idealtheorie, Math. Z. 45 (1939), 533–553. (1939) | MR 0000604 | Zbl 0021.38703
Groups of Divisibility, D. Reidl Publ. Co., Dordrecht, 1983. (1983) | MR 0720862
Groups with quasi divisor theory, Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. (1993) | MR 1223185
Divisorentheorie einer Halbgruppe, Math. Z. 114 (1970), 113–120. (1970) | MR 0262401 | Zbl 0177.03202