For natural numbers $r$ and $n\ge 2$ a complete classification of natural affinors on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
@article{107740, author = {W\l odzimierz M. Mikulski}, title = {The natural affinors on $(J^rT^*)^*$}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {261-267}, zbl = {1049.58012}, mrnumber = {1811170}, language = {en}, url = {http://dml.mathdoc.fr/item/107740} }
Mikulski, Włodzimierz M. The natural affinors on $(J^rT^*)^*$. Archivum Mathematicum, Tome 036 (2000) pp. 261-267. http://gdmltest.u-ga.fr/item/107740/
Natural transformations between $TTT^*M$ and $TT^*TM$, Czechoslovak Math. J. 43 (118) 1993, 599–613. | MR 1258423 | Zbl 0806.53024
Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205–209. | MR 1189217
Natural affinors on the extended $r$-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo, 30 (1993), 95–100. | MR 1246623
Natural operations in differential geometry, Springer-Verlag, Berlin 1993. | MR 1202431
Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2(1992), 1–16. | MR 1244453
Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175–180. | MR 1222284
Natural affinors on $r$-jet prolongation of the tangent bundle, Arch. Math. (Brno) 34(2)(1998), 321–328. | MR 1645340 | Zbl 0915.58006
The natural affinors on $\otimes ^k T^{(r)}$, Note di Matematica, to appear.
On the order of natural operators and liftings, Ann. Polon. Math. 49(1988), 169–178. | MR 0983220