For integers $r\ge 2$ and $n\ge 2$ a complete classification of all natural operators $A:T_{\vert M_n}\rightsquigarrow T(J^rT^*)^*$ lifting vector fields to vector fields on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
@article{107739, author = {W\l odzimierz M. Mikulski}, title = {The natural operators lifting vector fields to $(J\sp rT\sp *)\sp *$}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {255-260}, zbl = {1049.58011}, mrnumber = {1811169}, language = {en}, url = {http://dml.mathdoc.fr/item/107739} }
Mikulski, Włodzimierz M. The natural operators lifting vector fields to $(J\sp rT\sp *)\sp *$. Archivum Mathematicum, Tome 036 (2000) pp. 255-260. http://gdmltest.u-ga.fr/item/107739/
Natural operations transforming vector fields to the second order tangent bundle, Čas. pěst. mat. 115(1990), 64–72. | MR 1044015
Lifting of functions and vector fields to natural bundles, Dissert. Math. CCXII, Warszawa, 1983. | MR 0697471
On natural operators on vector fields, Ann. Global Analysis and Geometry, 6(2) (1988), 109–117. | MR 0982760
On the natural operators transforming vector fields to the $r$-th tensor power,, Suppl. Rendiconti Circolo Mat. Palermo, 32 (II) (1993), 15–20. | MR 1283617
Natural operations in differential geometry, Springer-Verlag, Berlin 1993. | MR 1202431
Natural liftings of vector fields to tangent bundles of bundles of 1-forms, Math. Boch. 116 (1991), 319–326. | MR 1126453 | Zbl 0743.53008
Some natural operations on vector fields, Rendiconti Math. Roma 12(VII) (1992), 783–803. | MR 1205977 | Zbl 0766.58005
Some natural constructions on vector fields and higher order cotangent bundles, Mh. Math. 117 (1994), 107–119. | MR 1266777 | Zbl 0796.58002
Natural operators on vector fields on the cotangent bundles of the bundles of (k,r)-velocities, Rend. Circ. Mat. Palermo 5431(II) (1998), 113–124 239–249. | MR 1662732 | Zbl 0929.58001