The $L^{2,\lambda }$ - regularity of the gradient of weak solutions to nonlinear elliptic systems is proved.
@article{107736, author = {Josef Dan\v e\v cek and Eugen Viszus}, title = {A note on regularity for nonlinear elliptic systems}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {229-237}, zbl = {1150.35390}, mrnumber = {1785041}, language = {en}, url = {http://dml.mathdoc.fr/item/107736} }
Daněček, Josef; Viszus, Eugen. A note on regularity for nonlinear elliptic systems. Archivum Mathematicum, Tome 036 (2000) pp. 229-237. http://gdmltest.u-ga.fr/item/107736/
On BMO regularity for linear elliptic systems, Ann. Mat. pura ed appl. 161 (1992), 231–269. (1992) | MR 1174819 | Zbl 0802.35015
Sistemi ellittici in forma divergenza. Regolarita all’interno, Quaderni, Pisa, 1980. (1980) | MR 0668196 | Zbl 0453.35026
Regularity for nonlinear elliptic systems, Comment. Math. Univ. Carolinae 27,4 (1986), 755–764. (1986) | MR 0874670
$L^{2,\lambda }$ - regularity for nonlinear elliptic systems of second order, In Applied Nonlinear Analysis, (A. Sequeira, H.B. da Veiga, J.H.Videman, eds.), Kluwer Academic/Plenum Publishers, New York, 1999, pp. 33–40. (1999) | MR 1727438
Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studied N.105, Princenton university press, Princeton, 1983. (1983) | MR 0717034 | Zbl 0516.49003
Sulla regularita delle soluzioni di equazioni ellitiche negli spazi $ H^{k,\lambda } $, Ann. Sc. Norm. Sup. Pisa 21 (1967), 527–545. (1967) | MR 0223723
Function spaces, Academia, Prague, 1977. (1977) | MR 0482102
Introduction to the theory of nonlinear elliptic equations, Teubner-Texte zur Mathematik, Leipzig, 1983. (1983) | MR 0731261
Some function spaces defined using the mean oscillation over cubes, Ann. Sc. Norm. Sup. Pisa 19 (1965), 593–608. (1965) | MR 0190729 | Zbl 0199.44303