For natural numbers $r$ and $n$ and a real number $a$ we construct a natural vector bundle $T^{(r),a}$ over $n$-manifolds such that $T^{(r),0}$ is the (classical) vector tangent bundle $T^{(r)}$ of order $r$. For integers $r\ge 1$ and $n\ge 3$ and a real number $a<0$ we classify all natural operators $T_{\vert M_n}\rightsquigarrow TT^{(r),a}$ lifting vector fields from $n$-manifolds to $T^{(r),a}$.
@article{107733, author = {W\l odzimierz M. Mikulski}, title = {The natural operators lifting vector fields to generalized higher order tangent bundles}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {207-212}, zbl = {1049.58010}, mrnumber = {1785038}, language = {en}, url = {http://dml.mathdoc.fr/item/107733} }
Mikulski, Włodzimierz M. The natural operators lifting vector fields to generalized higher order tangent bundles. Archivum Mathematicum, Tome 036 (2000) pp. 207-212. http://gdmltest.u-ga.fr/item/107733/
Natural operators transforming vector fields to the second order tangent bundle, Cas. pest. mat. 115 (1990), 64–72. | MR 1044015 | Zbl 0712.58003
On the natural operators transforming vector fields to the $r$-th tensor power, Suppl. Rendiconti Circolo Mat. Palermo, 32(II) (1993), 15–20. | MR 1283617
Natural operations in differential geometry, Springer-Verlag, Berlin 1993. | MR 1202431
Some natural operations on vector fields, Rendiconti Math. Roma 12(VII) (1992), 783–803. | MR 1205977 | Zbl 0766.58005
Natural transformations of vector fields on manifolds to vector fields on tangent bundles, Tsukuba J. Math. 12 (1988), 115–128. | MR 0949905