Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.
@article{107732, author = {Mohammad Ashraf and Nadeem-ur-Rehman}, title = {On Lie ideals and Jordan left derivations of prime rings}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {201-206}, zbl = {1030.16018}, mrnumber = {1785037}, language = {en}, url = {http://dml.mathdoc.fr/item/107732} }
Ashraf, Mohammad; Nadeem-ur-Rehman. On Lie ideals and Jordan left derivations of prime rings. Archivum Mathematicum, Tome 036 (2000) pp. 201-206. http://gdmltest.u-ga.fr/item/107732/
Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math. Soc. 90 (1984), 9–14. (1984) | MR 0722405 | Zbl 0528.16020
Lie ideals and derivations of prime rings , J. Algebra 71 (1981), 259–267. (1981) | MR 0627439
Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006. (1988) | MR 0929422 | Zbl 0691.16039
Jordan derivations of prime rings, Bull. Aust. Math. Soc. 37 (1988), 321–322. (1988) | MR 0943433
On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7–16. (1990) | MR 1028284 | Zbl 0703.16020
On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145–147. (1992) | MR 1272614 | Zbl 0813.16021
Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. (1957) | MR 0095864
Topics in ring theory, Univ. of Chcago Press, Chicago 1969. (1969) | MR 0271135 | Zbl 0232.16001
A note on Jordan left derivations, Bull. Korean Math. Soc. 33 (1996) No. 2, 221–228. (1996) | MR 1405475
Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. (1957) | MR 0095863
Jordan left derivations on semiprime rings, Math. J. Okayama Univ. (to appear). | MR 1680747 | Zbl 0937.16044