Given a Weil algebra $A$ and a smooth manifold $M$, we prove that the set $J^AM$ of kernels of regular $A$-points of $M$, $\check{M}^A$, has a differentiable manifold structure and $\check{M}^A\longrightarrow J^AM$ is a principal fiber bundle.
@article{107731, author = {Ricardo J. Alonso}, title = {Jet manifold associated to a Weil bundle}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {195-199}, zbl = {1049.58007}, mrnumber = {1785036}, language = {en}, url = {http://dml.mathdoc.fr/item/107731} }
Alonso, Ricardo J. Jet manifold associated to a Weil bundle. Archivum Mathematicum, Tome 036 (2000) pp. 195-199. http://gdmltest.u-ga.fr/item/107731/
Affine structure on Weil bundles, To appear in Nagoya Math J. | MR 1766571 | Zbl 0961.58002
Natural operations in differential geometry, Springer-Verlag, New York, 1993. (1993) | MR 1202431 | Zbl 0782.53013
Weil bundles and jet spaces, To appear in Czech. Math. J.
Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117. (1953) | MR 0061455 | Zbl 0053.24903