If $A$ is a class of partially ordered sets, let $P(A)$ denote the system of all posets which are isomorphic to the system of all intervals of $A$ for some $A\in A.$ We give an algebraic characterization of elements of $P(A)$ for $A$ being the class of all bounded posets and the class of all posets $A$ satisfying the condition that for each $a\in A$ there exist a minimal element $u$ and a maximal element $v$ with $u\le a\le v,$ respectively.
@article{107729, author = {Judita Lihov\'a}, title = {Characterization of posets of intervals}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {171-181}, zbl = {1047.06002}, mrnumber = {1785034}, language = {en}, url = {http://dml.mathdoc.fr/item/107729} }
Lihová, Judita. Characterization of posets of intervals. Archivum Mathematicum, Tome 036 (2000) pp. 171-181. http://gdmltest.u-ga.fr/item/107729/
Selfduality of lattices of intervals of finite lattices, Inst. matem. Sibir. Otdel. AN SSSR, Meždunarodnaja konferencija po algebre posvjaščennaja pamjati A. I. Maĺceva, Tezisyy dokladov po teoriji modelej i algebraičeskich sistem, Novosibirsk 1989, s. 48.
Lattices of intervals and lattices of convex sublattices of lattices, Uporjadočennyje množestva i rešotki. Saratov 6 (1990), 69–76. (1990)
Identities in interval lattices of lattices, Coll. Math. Soc. J. Bolyai 33 (Contributions to Lattice Theory), Szeged 1980 (1983), 491–501. (1983) | MR 0724279
On lattices with restriction on their intervals, Coll. Math. Soc. J. Bolyai 43 (Lectures in Universal Algebra), Szeged 1983 (1986), 209–216. (1986)
Algebraic characteristic of lattices of intervals, Uspechi matem. nauk 40 (1985), 205–206. (1985) | MR 0795195
Semimodularity in lattices of intervals, Math. Slovaca 38 (1988), 305–308. (1988) | MR 0978760
Selfduality of the system of intervals of a partially ordered set, Czechoslov. Math. J. 41 (1991), 135–140. (1991) | MR 1087633
Systems of intervals of partially ordered sets, Math. Slovaca 46 (1996 No. 4), 355–361. (1996 No. 4) | MR 1472629
Intervals, convex sublattices and subdirect representations of lattices, Universal Algebra and Applications, Banach Center Publications, Vol. 9, Warsaw 1982, 335–339. | MR 0738826 | Zbl 0506.06003
Posets having a selfdual interval poset, Czechoslov. Math. J. 44 (1994), 523–533. (1994) | MR 1288170
On posets with isomorphic interval posets, Czechoslov. Math. J. 49 (1999), 67–80. (1999) | MR 1676841
On lattices with isomorphic interval lattices, Czechoslov. Math. J. 35 (1985), 550–554. (1985) | MR 0809041