Let $i:H\rightarrow W$ be the canonical Wiener space where $W$={$\sigma :[0,T]\rightarrow {R}$ continuous with $\sigma \left( 0\right) =0\rbrace $, $H$ is the Cameron-Martin space and $i$ is the inclusion. We lift a isometry $H\rightarrow l_{2}$ to a linear isomorphism $\Phi :W\rightarrow {\cal V}\subset {R}^{\infty }$ which pushes forward the Wiener structure into the abstract Wiener space (AWS) $i:l_{2}\rightarrow {\cal V}$. Properties of the Wiener integration in this AWS are studied.
@article{107722, author = {Alexandre de Andrade and Paulo R. C. Ruffino}, title = {Wiener integral in the space of sequences of real numbers}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {95-101}, zbl = {1045.60003}, mrnumber = {1761614}, language = {en}, url = {http://dml.mathdoc.fr/item/107722} }
de Andrade, Alexandre; Ruffino, Paulo R. C. Wiener integral in the space of sequences of real numbers. Archivum Mathematicum, Tome 036 (2000) pp. 95-101. http://gdmltest.u-ga.fr/item/107722/
Gaussian measures on linear spaces, Analysis 8, J. Maths. Sci. 79, no. 2 (1996), 933–1034. (1996) | MR 1393507 | Zbl 0881.28009
Abstract Wiener measure, Lecture Notes in Math. 140 (1970), Springer-Verlag. (1970) | MR 0265548 | Zbl 0203.13002
Stochastic Differential Equations and Diffusion Processes, 2nd edition (1989), North-Holland Publishing Company. (1989) | MR 1011252 | Zbl 0684.60040
An Introduction to Harmonic Analysis, Dover Publications (1976). (1976) | MR 0422992 | Zbl 0352.43001
Gaussian measures in Banach spaces, Lecture Notes in Math. 463 (1975) , Springer-Verlag. (1975) | MR 0461643 | Zbl 0306.28010
Malliavin Calculus and Related Topics, Springer-Verlag 1996. (1996)
Continuous Martingales and Brownian Motion, Springer-Verlag 1991. (1991) | MR 1083357 | Zbl 0731.60002
Lectures on Stochastic Differential Equations and Malliavin Calculus, Tata Inst. Fundamental Research (1984), Springer-Verlag. (1984) | MR 0742628 | Zbl 0546.60054