Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring
Pastijn, Francis J. ; Zhao, Xian Zhong
Archivum Mathematicum, Tome 036 (2000), p. 77-93 / Harvested from Czech Digital Mathematics Library

The idempotent semirings for which Green’s ${\cal D}$-relation on the multiplicative reduct is a congruence relation form a subvariety of the variety of all idempotent semirings. This variety contains the variety consisting of all the idempotent semirings which do not contain a two-element monobisemilattice as a subsemiring. Various characterizations will be given for the idempotent semirings for which the ${\cal D}$-relation on the multiplicative reduct is the least lattice congruence.

Publié le : 2000-01-01
Classification:  16Y60,  20M10
@article{107721,
     author = {Francis J. Pastijn and Xian Zhong Zhao},
     title = {Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {77-93},
     zbl = {1051.16027},
     mrnumber = {1761613},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107721}
}
Pastijn, Francis J.; Zhao, Xian Zhong. Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring. Archivum Mathematicum, Tome 036 (2000) pp. 77-93. http://gdmltest.u-ga.fr/item/107721/

Howie J. M. Fundamentals of Semigroup Theory, Oxford Science Publications, Oxford, 1995. (1995) | MR 1455373 | Zbl 0835.20077

Mckenzie R.; And A. Romanowska Varieties of $\cdot $-distributive bisemilattices, Contributions to General Algebra, (Proc. Klagenfurt Conf., Klagenfurt 1978), 213–218, Heyn, Klagenfurt, 1979. (1978) | MR 0537422

Pastijn F.; And Y. Q. Guo The lattice of idempotent distributive semiring varieties, Science in China (Series A) 42 (8) (1999), 785–804. (1999) | MR 1738550

Sen M. K.; Guo Y. Q.; And K. P. Shum A class of idempotent semirings, preprint. | MR 1828821