On the limit cycle of the Liénard equation
Odani, Kenzi
Archivum Mathematicum, Tome 036 (2000), p. 25-31 / Harvested from Czech Digital Mathematics Library

In the paper, we give an existence theorem of periodic solution for Liénard equation $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$. As a result, we estimate the amplitude $\rho (\mu )$ (maximal $x$-value) of the limit cycle of the van der Pol equation $\dot{x}=y-\mu (x^3/3-x)$, $\dot{y}=-x$ from above by $\rho (\mu )<2.3439$ for every $\mu \ne 0$. The result is an improvement of the author’s previous estimation $\rho (\mu )<2.5425$.

Publié le : 2000-01-01
Classification:  34C05
@article{107715,
     author = {Kenzi Odani},
     title = {On the limit cycle of the Li\'enard equation},
     journal = {Archivum Mathematicum},
     volume = {036},
     year = {2000},
     pages = {25-31},
     zbl = {1048.34067},
     mrnumber = {1751611},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107715}
}
Odani, Kenzi. On the limit cycle of the Liénard equation. Archivum Mathematicum, Tome 036 (2000) pp. 25-31. http://gdmltest.u-ga.fr/item/107715/

Alsholm P. Existence of limit cycles for generalized Liénard equation, J. Math. Anal. Appl. 171 (1992), 242–255. (1992) | MR 1192504

Cartwright M. L. Van der Pol’s equation for relaxation oscillation, In: Contributions to the Theory of Non-linear Oscillations II, S. Lefschetz, ed., Ann. of Math. Studies, vol. 29, Princeton Univ. Press, 1952, pp. 3–18. (1952) | MR 0052617

Giacomini H.; Neukirch S. On the number of limit cycles of Liénard equation, Physical Review E56 (1997), 3809-3813. (1997) | MR 1476640

Van Horssen W. T. A perturbation method based on integrating factors, SIAM J. Appl. Math. 59 (1999), 1427-1443. (1999) | MR 1692651 | Zbl 0926.34043

Lefschetz S. Differential Equations: Geometric Theory, 2nd Ed., Interscience, 1963; reprint, Dover, New York, 1977. (1963) | MR 0153903 | Zbl 0107.07101

Odani K. The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115 (1995), 146–152. (1995) | MR 1308609 | Zbl 0816.34023

Odani K. Existence of exactly $N$ periodic solutions for Liénard systems, Funkcialaj Ekvacioj 39 (1996), 217–234. (1996) | MR 1418722 | Zbl 0864.34032

Odani K. On the limit cycle of the van der Pol equation, In: Equadiff9 CD-ROM: Papers, Z. Došlá, J. Kuben, J. Vosmanský, eds., Masaryk Univ., Czech, 1998, pp. 229-235. (1998)

Ye Y.-Q.; Al. Theory of Limit Cycles, Transl. of Math. Monographs, vol. 66, Amer. Math. Soc., 1986. (Eng. Transl.) (1986) | MR 0854278 | Zbl 0588.34022

Zhang Z.-F.; Al. Qualitative Theory of Differential Equations, Transl. of Math. Monographs, vol. 102, Amer. Math. Soc., 1992. (Eng. Transl.) (1992) | MR 1175631 | Zbl 0779.34001