The problem of existence and asymptotic behavior of solutions of the quasilinear and quadratic singularly perturbed periodic boundary value problem as a small parameter at highest derivative tends to zero is studied.
@article{107712, author = {R\'obert Vr\'abe\v l}, title = {Quasilinear and quadratic singularly perturbed periodic boundary value problem}, journal = {Archivum Mathematicum}, volume = {036}, year = {2000}, pages = {1-7}, zbl = {1048.34094}, mrnumber = {1751608}, language = {en}, url = {http://dml.mathdoc.fr/item/107712} }
Vrábeľ, Róbert. Quasilinear and quadratic singularly perturbed periodic boundary value problem. Archivum Mathematicum, Tome 036 (2000) pp. 1-7. http://gdmltest.u-ga.fr/item/107712/
Points fixes, points critiques et problèmes aux limites, Sémin. Math. Sup. no. 92, Press Univ. Montréal, Montréal (1985). (1985) | MR 0789982 | Zbl 0561.34001
On some non-linear boundary value problems for ordinary differential equations, Arch. Math. (Brno) 25 (1989), 207–222. (1989)
Asymptotic behavior of T-periodic solutions of singularly perturbed second-order differential equation, Mathematica Bohemica 121 (1996), 73–76. (1996) | MR 1388177