Two symplectic structures on a manifold $M$ determine a (1,1)-tensor field on $M$. In this paper we study some properties of this field. Conversely, if $A$ is (1,1)-tensor field on a symplectic manifold $(M, \omega )$ then using the natural lift theory we find conditions under which $\omega ^A, \omega ^A(X, Y)=\omega (AX, Y)$, is symplectic.
@article{107707, author = {Anton Dekr\'et}, title = {On $(1,1)$-tensor fields on symplectic manifolds}, journal = {Archivum Mathematicum}, volume = {035}, year = {1999}, pages = {329-336}, zbl = {1054.53089}, mrnumber = {1744520}, language = {en}, url = {http://dml.mathdoc.fr/item/107707} }
Dekrét, Anton. On $(1,1)$-tensor fields on symplectic manifolds. Archivum Mathematicum, Tome 035 (1999) pp. 329-336. http://gdmltest.u-ga.fr/item/107707/
Liftings of tensor fields to the cotangent bundle, Proceedings, Int. conference Diff. Geometry and Applications Brno (1996), MU Brno, 141–150. (1996) | MR 1406334
Liftings of covariant (0,2)-tensor fields to the bundle of $k$-dimensional 1-velocities, Supplements di Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), 111–121. (1996) | MR 1463514
Lifts of some tensor fields and connections to product preserving functors, 135 (1914), Nagoya Math. J., 1–41. (1914) | MR 1295815
Symplectic Geometry and Analytical Mechanics, (1987), D. Reider Pub. Comp., Dortrecht - Boston - Lancaster - Tokyo. (1987) | MR 0882548
Tangent and cotangent bundles, M. Dekker Inc. New York, 1973. (1973) | MR 0350650