Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles
Dalík, Josef
Archivum Mathematicum, Tome 035 (1999), p. 285-297 / Harvested from Czech Digital Mathematics Library

An explicit description of the basic Lagrange polynomials in two variables related to a six-tuple $a^1,\dots ,a^6$ of nodes is presented. Stability of the related Lagrange interpolation is proved under the following assumption: $a^1,\dots ,a^6$ are the vertices of triangles $T_1,\dots ,T_4$ without obtuse inner angles such that $T_1$ has one side common with $T_j$ for $j=2,3,4$.

Publié le : 1999-01-01
Classification:  41A05,  41A10,  41A63,  65D05
@article{107703,
     author = {Josef Dal\'\i k},
     title = {Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles},
     journal = {Archivum Mathematicum},
     volume = {035},
     year = {1999},
     pages = {285-297},
     zbl = {1051.41002},
     mrnumber = {1744516},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107703}
}
Dalík, Josef. Stability of quadratic interpolation polynomials in vertices of triangles without obtuse angles. Archivum Mathematicum, Tome 035 (1999) pp. 285-297. http://gdmltest.u-ga.fr/item/107703/

Quadratic interpolation polynomials in vertices of strongly regular triangulations, in Finite Element Methods, superconvergence, post-processing and a posteriori estimates, Ed. Křižek, Neittaanmäki, Stenberg, Marcel Dekker (1996), 85–95. (1996) | MR 1602833

On multivariate Lagrange interpolation, Math. of Comp. 64 (1995), 1147–1170. (1995) | MR 1297477