It is proved that under some conditions the set of all solutions of an initial value problem for $n$-th order functional differential system on an unbounded interval is a compact $R_\delta $.
@article{107697, author = {Zbyn\v ek Kub\'a\v cek}, title = {On the structure of the solution set of a functional-differential system on an unbounded interval}, journal = {Archivum Mathematicum}, volume = {035}, year = {1999}, pages = {215-228}, zbl = {1054.34103}, mrnumber = {1725839}, language = {en}, url = {http://dml.mathdoc.fr/item/107697} }
Kubáček, Zbyněk. On the structure of the solution set of a functional-differential system on an unbounded interval. Archivum Mathematicum, Tome 035 (1999) pp. 215-228. http://gdmltest.u-ga.fr/item/107697/
Boundary value problems on infinite intervals, Trans. Am. Math. Soc. (to appear). | MR 1603870
Topological structure of solution sets to multivalued asymptotic problems, Přírodovědecká fakulta UP Olomouc, Katedra mat. analýzy a aplikací matematiky, Preprint 1, 1999. (1999) | MR 1603870
Differential Inclusions, Set-Valued Maps and Viability Theory, Berlin, Springer-Verlag 1984. (1984) | MR 0755330 | Zbl 0538.34007
On the structure of the fixed point sets of some compact maps in the Fréchet space, Mathematica Bohemica, 118 (1993), No. 4, 343–358. (1993) | MR 1251881
A remark on second order functional differential systems, Archivum Mathematicum (Brno), 29 (1993), No. 3-4, 169–176. (1993) | MR 1263119 | Zbl 0804.34060
On the initial value problem for functional differential systems, Proc. of the Georgian Acad. of Sciences, Mathematics 1 (1993), No. 4, 467–476. (1993) | MR 1262578 | Zbl 0801.34062
On the connectedness of the set of fixed points of a compact operator in the Fréchet space $C^m([b,\infty ),\text{R}^n)$, Czech. Math. J., 42(117) (1992), 577–588. (1992) | MR 1182189
A fixed point theorem for function spaces, J. Math. Anal. Appl. 36 (1971), 581–587. (1971) | MR 0285945 | Zbl 0194.44903