Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.
@article{107687, author = {Mohammed Benalili and Abdelkader Boucherif}, title = {Subalgebras of finite codimension in symplectic Lie algebra}, journal = {Archivum Mathematicum}, volume = {035}, year = {1999}, pages = {103-114}, zbl = {1064.17508}, mrnumber = {1711673}, language = {en}, url = {http://dml.mathdoc.fr/item/107687} }
Benalili, Mohammed; Boucherif, Abdelkader. Subalgebras of finite codimension in symplectic Lie algebra. Archivum Mathematicum, Tome 035 (1999) pp. 103-114. http://gdmltest.u-ga.fr/item/107687/
Fibrés naturels définis sur la catégorie des $\Gamma -$variétés, Circolo Mat. di Palermo, 13, (1994), 309-328. (1994) | MR 1344871
Transformation groups and natural bundles, Proc. London Math. Soc. 38 (1979), 219-237. (1979) | MR 0531161 | Zbl 0409.58001
Infinite dimensional Lie transformation groups, Lect. Notes in Math. (427), Springer Verlag. | MR 0431262 | Zbl 0328.58005
Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company Holland (1987). (1987) | MR 0882548 | Zbl 0643.53002
Natural bundles have finite order, Topology 16 (1978), 271-277. (1978) | MR 0467787