Subalgebras of finite codimension in symplectic Lie algebra
Benalili, Mohammed ; Boucherif, Abdelkader
Archivum Mathematicum, Tome 035 (1999), p. 103-114 / Harvested from Czech Digital Mathematics Library

Subalgebras of germs of vector fields leaving $0$ fixed in $R^{2n}$, of finite codimension in symplectic Lie algebra contain the ideal of germs infinitely flat at $0$. We give an application.

Publié le : 1999-01-01
Classification:  17B66
@article{107687,
     author = {Mohammed Benalili and Abdelkader Boucherif},
     title = {Subalgebras of finite codimension in symplectic Lie algebra},
     journal = {Archivum Mathematicum},
     volume = {035},
     year = {1999},
     pages = {103-114},
     zbl = {1064.17508},
     mrnumber = {1711673},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107687}
}
Benalili, Mohammed; Boucherif, Abdelkader. Subalgebras of finite codimension in symplectic Lie algebra. Archivum Mathematicum, Tome 035 (1999) pp. 103-114. http://gdmltest.u-ga.fr/item/107687/

Bénalili M. Fibrés naturels définis sur la catégorie des $\Gamma -$variétés, Circolo Mat. di Palermo, 13, (1994), 309-328. (1994) | MR 1344871

Epstein D. B. A.; Thurston W. P. Transformation groups and natural bundles, Proc. London Math. Soc. 38 (1979), 219-237. (1979) | MR 0531161 | Zbl 0409.58001

Omori H. Infinite dimensional Lie transformation groups, Lect. Notes in Math. (427), Springer Verlag. | MR 0431262 | Zbl 0328.58005

Libermann P.; Marle C. M. Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company Holland (1987). (1987) | MR 0882548 | Zbl 0643.53002

Palais R. S.; Terng C. L. Natural bundles have finite order, Topology 16 (1978), 271-277. (1978) | MR 0467787