Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients
Cavalcanti, M. M.
Archivum Mathematicum, Tome 035 (1999), p. 29-57 / Harvested from Czech Digital Mathematics Library

In this paper we study the boundary exact controllability for the equation \[ \frac{\partial }{\partial t}\left(\alpha (t){{\partial y}\over { \partial t}}\right)-\sum _{j=1}^n{{\partial }\over {\partial x_j}}\left(\beta (t)a(x){{\partial y}\over {\partial x_j}}\right)=0\;\;\;\hbox{in}\;\; \Omega \times (0,T)\,, \] when the control action is of Dirichlet-Neumann form and $\Omega $ is a bounded domain in ${R}^n$. The result is obtained by applying the HUM (Hilbert Uniqueness Method) due to J. L. Lions.

Publié le : 1999-01-01
Classification:  35B35,  35B40,  35L05,  35L99,  93B05,  93C20
@article{107683,
     author = {M. M. Cavalcanti},
     title = {Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients},
     journal = {Archivum Mathematicum},
     volume = {035},
     year = {1999},
     pages = {29-57},
     zbl = {1046.35013},
     mrnumber = {1684521},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107683}
}
Cavalcanti, M. M. Exact controllability of the wave equation with mixed boundary condition and time-dependent coefficients. Archivum Mathematicum, Tome 035 (1999) pp. 29-57. http://gdmltest.u-ga.fr/item/107683/

Bardos C.; Cheng C. Control and stabilization for the wave equation, part III : domain with moving boundary, Siam J. Control and Optim., 19 (1981), 123-138. (1981) | MR 0603085

Bardos C.; Lebeau G.; Rauch J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, Siam J. Control and Optim., 30, N.5 (1992), 1024-1065. (1992) | MR 1178650 | Zbl 0786.93009

Cioranescu D.; Donato P.; Zuazua E. Exact Boundary Controllability for the wave equation in domains with small holes, J. Math. Pures Appl. 71 (1992), 343-357. (1992) | MR 1176016 | Zbl 0843.35009

Coron J. M. Contrôlabilité exacte frontière de l’ équacion d’ Euler des fluides parfais incompressibles bidimensionnels, C.R.A.S. Paris, 317 (1993) S.I, 271-276. (1993) | MR 1233425

Fuentes Apolaya R. Exact Controllability for temporally wave equation, Portugaliae Math., (1994), 475-488. (1994) | MR 1313160

Grisvard P. Contrôlabilité exacte des solutions de l’équacion des ondes en présence de singularités, J. Math. pure et appl., 68 (1989), 215-259. (1989) | MR 1010769

Komornik V. Contrôlabilité exacte en un temps minimal, C.R.A.S. Paris, 304 (1987), 223-235. (1987) | MR 0883479 | Zbl 0611.49027

Komornik V. Exact Controllability in short time for wave equation, Ann. Inst. Henri Poincaré, 6 (1989), 153-164. (1989) | MR 0991876

Lagnese J. Control of wave processes with distributed controls supported on a subregion, Siam J. Control and Optmin. 21 (1983), 68-85. (1983) | MR 0688440 | Zbl 0512.93014

Lagnese J. Boundary Patch control of the wave equation in some non-star complemeted regions, J. Math. Anal. 77 (1980) 364-380. (1980) | MR 0593220

Lagnese J. Boundary Value Control of a Class of Hyperbolic Equations in a General Region, Siam J. Control and Optim., 15, N.6 (1977), 973-983. (1977) | MR 0477480 | Zbl 0375.93029

Lagnese J.; Lions J. L. Modelling, Analysis and Exact Controllability of Thin Plates, RMA Collection, N.6, Masson, Paris, (1988). (1988) | MR 0953313

Lasiecka I.; Triggiani R. Exact Controllability for the wave equation with Neumann boundary Control, Appl. Math. Optim. 19 (1989), 243-290. (1989) | MR 0974187

Lions J. L. Controlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Masson, Paris, (1988). (1988) | MR 0953547