On the asymptotically periodic solution of some linear difference equations
Popenda, Jerzy ; Schmeidel, Ewa
Archivum Mathematicum, Tome 035 (1999), p. 13-19 / Harvested from Czech Digital Mathematics Library

For the linear difference equation \[ x_{n+1} -a_n x_n = \sum _{i=0}^r a_n^{(i)}x_{n+i}, \;\;\; n \in N \] sufficient conditions for the existence of an asymptotically periodic solutions are given.

Publié le : 1999-01-01
Classification:  39A10,  39A11
@article{107681,
     author = {Jerzy Popenda and Ewa Schmeidel},
     title = {On the asymptotically periodic solution of some linear difference equations},
     journal = {Archivum Mathematicum},
     volume = {035},
     year = {1999},
     pages = {13-19},
     zbl = {1051.39010},
     mrnumber = {1684519},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107681}
}
Popenda, Jerzy; Schmeidel, Ewa. On the asymptotically periodic solution of some linear difference equations. Archivum Mathematicum, Tome 035 (1999) pp. 13-19. http://gdmltest.u-ga.fr/item/107681/

Agarwal R. P.; Popenda J. Periodic Solutions of First Order Linear Difference Equations, Math. Comput. Modelling 22, 1, 1995, 11-19. (1995) | MR 1343651 | Zbl 0871.39002

Musielak R.; Popenda J. The Periodic Solutions of the Second Order Nonlinear Difference Equation, Publ. Mat. 32, 1988, 49-56. (1988) | MR 0939768 | Zbl 0649.39005

Popenda J.; Schmeidel E. On the Asymptotic Behavior of Solutions of Linear Difference Equations, Publ. Mat. 38, 1994, 3-9. (1994) | MR 1291948 | Zbl 0842.39003

Popenda J.; Schmeidel E. On the Asymptotic Behaviour of Solution of Some Difference Equations of Infinite Order, (submitted).