Let $\alpha $ be such that $0<\alpha <\frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation.
@article{107616, author = {Malcolm T. McGregor}, title = {On a generalized Wiener-Hopf integral equation}, journal = {Archivum Mathematicum}, volume = {033}, year = {1997}, pages = {273-278}, zbl = {0912.45003}, mrnumber = {1601321}, language = {en}, url = {http://dml.mathdoc.fr/item/107616} }
McGregor, Malcolm T. On a generalized Wiener-Hopf integral equation. Archivum Mathematicum, Tome 033 (1997) pp. 273-278. http://gdmltest.u-ga.fr/item/107616/
An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, New York, 1966. | MR 0210154 | Zbl 0598.60003
On a Wiener-Hopf integral equation, J. Integral Eqns. & Applns. (4)7 (1995), 475-483. | MR 1382065 | Zbl 0849.45001
The Wiener-Hopf Technique, Pergamon Press, New York, 1958. | MR 0102719 | Zbl 0657.35001