Let $\alpha $ be such that $0<\alpha <\frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation.
@article{107616,
author = {Malcolm T. McGregor},
title = {On a generalized Wiener-Hopf integral equation},
journal = {Archivum Mathematicum},
volume = {033},
year = {1997},
pages = {273-278},
zbl = {0912.45003},
mrnumber = {1601321},
language = {en},
url = {http://dml.mathdoc.fr/item/107616}
}
McGregor, Malcolm T. On a generalized Wiener-Hopf integral equation. Archivum Mathematicum, Tome 033 (1997) pp. 273-278. http://gdmltest.u-ga.fr/item/107616/
An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, New York, 1966. | MR 0210154 | Zbl 0598.60003
On a Wiener-Hopf integral equation, J. Integral Eqns. & Applns. (4)7 (1995), 475-483. | MR 1382065 | Zbl 0849.45001
The Wiener-Hopf Technique, Pergamon Press, New York, 1958. | MR 0102719 | Zbl 0657.35001